# app.py import os import gradio as gr import keras import keras_hub # Import the specific downloader function from huggingface_hub import hf_hub_download # Set Keras backend os.environ["KERAS_BACKEND"] = "jax" os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "1.00" # --- 1. LOAD THE MERGED MODEL FROM THE HUB (CORRECTED METHOD) --- # Define your repository and the filename of the model repo_id = "Tarive/lora_research_abstracts" model_filename = "model.keras" # The name we used during the upload step print(f"Downloading model file '{model_filename}' from Hub repo: {repo_id}") # Step 1: Explicitly download the .keras file and get its local path in the cache model_path = hf_hub_download(repo_id=repo_id, filename=model_filename) print(f"Loading merged model from local path: {model_path}") # Step 2: Load the model directly from the specific file path # This avoids the directory format error. gemma_lm = keras.models.load_model(model_path) # Compile the model with a sampler for generation gemma_lm.compile(sampler=keras_hub.samplers.TopKSampler(k=5)) print("Model loaded and compiled successfully.") # --- 2. DEFINE THE INFERENCE FUNCTION (No changes needed here) --- def revise_abstract(draft_abstract, grant_type): if not draft_abstract or not grant_type: return "Error: Please provide both a draft abstract and a grant type." template = ( "Instruction:\n" "You are an expert grant writer. Rewrite the following draft abstract to be more impactful and clear, " "following the specific conventions of a {activity_code} grant. Ensure the most compelling claims are front-loaded.\n\n" "Input Draft:\n" "{unoptimized_abstract}\n\n" "Revised Abstract:" ) prompt = template.format(unoptimized_abstract=draft_abstract, activity_code=grant_type) output = gemma_lm.generate(prompt, max_length=1024) parts = output.split("Revised Abstract:") return parts[1].strip() if len(parts) > 1 else output.strip() # --- 3. CREATE THE GRADIO INTERFACE (No changes needed here) --- with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# Grant Abstract Revision Tool (Fine-Tuned on Gemma)") gr.Markdown("Enter a draft abstract and select its grant type. The model will rewrite it to be more impactful, based on patterns from successfully funded NIH grants.") with gr.Row(): draft_input = gr.Textbox(lines=15, label="Input Draft Abstract", placeholder="Paste your draft abstract here...") grant_type_input = gr.Dropdown( ["R01", "R21", "F32", "T32", "P30", "R41", "R43", "R44", "K99"], label="Grant Type (Activity Code)", info="Select the grant mechanism you are targeting." ) submit_button = gr.Button("Revise Abstract", variant="primary") revised_output = gr.Textbox(lines=15, label="Model's Revised Abstract", interactive=False) submit_button.click(fn=revise_abstract, inputs=[draft_input, grant_type_input], outputs=revised_output) gr.Examples( examples=[ ["SUMMARY \nA pressing concern exists regarding lead poisoning...This study aimed to optimize and validate a dried blood spot collection device...", "R41"], ["This project is about figuring out how macrophages and S. flexneri interact...Our study will look at this in vitro and in vivo...", "R21"] ], inputs=[draft_input, grant_type_input] ) print("Launching Gradio app...") demo.launch()