import gradio as gr import torch import yaml import json from tokenizers import Tokenizer # --- 1. Load Custom Model Code --- # This dynamically loads your corrected HRM source code. # Since the files are in the root, we import directly. from hrm_act_v1 import HierarchicalReasoningModel_ACTV1 # --- 2. Load Artifacts --- print("Loading artifacts...") # Load the tokenizer tokenizer = Tokenizer.from_file("tokenizer.json") # Load the model configuration with open('config.yaml', 'r') as f: config_data = yaml.safe_load(f) model_config = config_data['arch'] # Load the grant type mapping with open('activity_code_map.json', 'r') as f: activity_code_map = json.load(f) # --- 3. Initialize the Model --- print("Initializing model...") # The model expects a dict, so we pass the Pydantic model's dict representation # We also need to add other required keys from the root of the config model_config.update({ 'batch_size': config_data['global_batch_size'], 'seq_len': 512, # You may need to get this from your dataset metadata 'num_puzzle_identifiers': len(activity_code_map) + 1, 'vocab_size': tokenizer.get_vocab_size() }) model = HierarchicalReasoningModel_ACTV1(config_dict=model_config) # Load the fine-tuned weights model.load_state_dict(torch.load('pytorch_model.bin', map_location='cpu')) model.eval() # Set the model to evaluation mode print("Model loaded successfully!") # --- 4. Define the Inference Function --- def optimize_abstract(draft_abstract, grant_type): """ Takes a draft abstract and grant type, runs the model, and returns the optimized text. """ if not draft_abstract or not grant_type: return "Please provide both a draft abstract and a grant type." try: # Prepare inputs tokenizer.enable_padding(length=512) tokenizer.enable_truncation(max_length=512) input_ids = tokenizer.encode(draft_abstract).ids grant_type_id = activity_code_map.get(grant_type, 0) # Default to 0 if unknown # Convert to PyTorch tensors input_tensor = torch.tensor([input_ids], dtype=torch.long) grant_tensor = torch.tensor([grant_type_id], dtype=torch.long) # Create the batch dictionary that the model expects batch = { "inputs": input_tensor, "puzzle_identifiers": grant_tensor, # The model requires a 'labels' field, even for inference, so we provide a dummy one "labels": torch.zeros_like(input_tensor) } # Run inference with torch.no_grad(): carry = model.initial_carry(batch) # The model runs in a loop; for inference, we run it for the max steps for _ in range(model_config['halt_max_steps']): carry, _ = model(carry=carry, batch=batch) # Get the final logits from the carry state final_logits = model.inner.lm_head(carry.inner_carry.z_H)[:, model.inner.puzzle_emb_len:] predicted_ids = torch.argmax(final_logits, dim=-1).squeeze().tolist() # Decode the output optimized_text = tokenizer.decode(predicted_ids, skip_special_tokens=True) return optimized_text except Exception as e: print(f"An error occurred during inference: {e}") return f"Error: Could not process the abstract. Details: {e}" # --- 5. Create the Gradio Interface --- grant_type_choices = list(activity_code_map.keys()) with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# 🚀 HRM Grant Abstract Optimizer") gr.Markdown("Enter a draft abstract and select the grant type to get a version optimized by the fine-tuned Hierarchical Reasoning Model.") with gr.Row(): with gr.Column(): draft_input = gr.Textbox(label="Draft Abstract", lines=15, placeholder="Paste your draft abstract here...") grant_type = gr.Dropdown(label="Grant Type", choices=grant_type_choices, value=grant_type_choices[0] if grant_type_choices else None) optimize_btn = gr.Button("Optimize Abstract", variant="primary") with gr.Column(): output_text = gr.Textbox(label="Optimized Abstract", lines=17, interactive=False) optimize_btn.click( fn=optimize_abstract, inputs=[draft_input, grant_type], outputs=output_text ) if __name__ == "__main__": demo.launch()