from typing import Any, Tuple, Dict, Sequence, Optional import torch import torch.nn.functional as F from torch import nn IGNORE_LABEL_ID = -100 def s(x, epsilon=1e-30): return torch.where( x<0, 1/(1-x+ epsilon), x + 1 ) def log_stablemax(x, dim=-1): s_x = s(x) return torch.log(s_x/torch.sum(s_x, dim=dim, keepdim=True)) def stablemax_cross_entropy(logits, labels, ignore_index: int = -100): logprobs = log_stablemax(logits.to(torch.float64), dim=-1) valid_mask = labels != ignore_index transformed_labels = torch.where(valid_mask, labels, 0) prediction_logprobs = torch.gather(logprobs, index=transformed_labels.to(torch.long).unsqueeze(-1), dim=-1).squeeze(-1) return -torch.where(valid_mask, prediction_logprobs, 0) def softmax_cross_entropy(logits, labels, ignore_index: int = -100): # Cast logits to f32 # Flatten logits return F.cross_entropy(logits.to(torch.float32).view(-1, logits.shape[-1]), labels.to(torch.long).view(-1), ignore_index=ignore_index, reduction="none").view(labels.shape) class ACTLossHead(nn.Module): def __init__(self, model: nn.Module, loss_type: str): super().__init__() self.model = model self.loss_fn = globals()[loss_type] def initial_carry(self, *args, **kwargs): return self.model.initial_carry(*args, **kwargs) # type: ignore def forward( self, return_keys: Sequence[str], # Model args **model_kwargs, ) -> Tuple[Any, torch.Tensor, Dict[str, torch.Tensor], Optional[Dict[str, torch.Tensor]], torch.Tensor]: # Model logits # B x SeqLen x D new_carry, outputs = self.model(**model_kwargs) labels = new_carry.current_data["labels"] # Correctness with torch.no_grad(): mask = labels != IGNORE_LABEL_ID loss_counts = mask.sum(-1) loss_divisor = loss_counts.clamp_min(1).unsqueeze(-1) # Avoid NaNs in division is_correct = mask & (torch.argmax(outputs["logits"], dim=-1) == labels) seq_is_correct = is_correct.sum(-1) == loss_counts # Metrics (halted) valid_metrics = new_carry.halted & (loss_counts > 0) metrics = { "count": valid_metrics.sum(), "accuracy": torch.where(valid_metrics, (is_correct.to(torch.float32) / loss_divisor).sum(-1), 0).sum(), "exact_accuracy": (valid_metrics & seq_is_correct).sum(), "q_halt_accuracy": (valid_metrics & ((outputs["q_halt_logits"] >= 0) == seq_is_correct)).sum(), "steps": torch.where(valid_metrics, new_carry.steps, 0).sum(), } # Losses # FIXME: Assuming the batch is always full lm_loss = (self.loss_fn(outputs["logits"], labels, ignore_index=IGNORE_LABEL_ID) / loss_divisor).sum() q_halt_loss = F.binary_cross_entropy_with_logits(outputs["q_halt_logits"], seq_is_correct.to(outputs["q_halt_logits"].dtype), reduction="sum") metrics.update({ "lm_loss": lm_loss.detach(), "q_halt_loss": q_halt_loss.detach(), }) # Q continue (bootstrapping target loss) q_continue_loss = 0 if "target_q_continue" in outputs: q_continue_loss = F.binary_cross_entropy_with_logits(outputs["q_continue_logits"], outputs["target_q_continue"], reduction="sum") metrics["q_continue_loss"] = q_continue_loss.detach() # Filter outputs for return detached_outputs = {k: outputs[k].detach() for k in return_keys if k in outputs} return new_carry, lm_loss + 0.5 * (q_halt_loss + q_continue_loss), metrics, detached_outputs, new_carry.halted.all()