Spaces:
Running
Running
import math | |
import torch | |
from torch import nn | |
def trunc_normal_init_(tensor: torch.Tensor, std: float = 1.0, lower: float = -2.0, upper: float = 2.0): | |
# NOTE: PyTorch nn.init.trunc_normal_ is not mathematically correct, the std dev is not actually the std dev of initialized tensor | |
# This function is a PyTorch version of jax truncated normal init (default init method in flax) | |
# https://github.com/jax-ml/jax/blob/main/jax/_src/random.py#L807-L848 | |
# https://github.com/jax-ml/jax/blob/main/jax/_src/nn/initializers.py#L162-L199 | |
with torch.no_grad(): | |
if std == 0: | |
tensor.zero_() | |
else: | |
sqrt2 = math.sqrt(2) | |
a = math.erf(lower / sqrt2) | |
b = math.erf(upper / sqrt2) | |
z = (b - a) / 2 | |
c = (2 * math.pi) ** -0.5 | |
pdf_u = c * math.exp(-0.5 * lower ** 2) | |
pdf_l = c * math.exp(-0.5 * upper ** 2) | |
comp_std = std / math.sqrt(1 - (upper * pdf_u - lower * pdf_l) / z - ((pdf_u - pdf_l) / z) ** 2) | |
tensor.uniform_(a, b) | |
tensor.erfinv_() | |
tensor.mul_(sqrt2 * comp_std) | |
tensor.clip_(lower * comp_std, upper * comp_std) | |
return tensor | |