Tarive's picture
Update app.py
d91f937 verified
raw
history blame
4.42 kB
import gradio as gr
import torch
import yaml
import json
from tokenizers import Tokenizer
# --- 1. Load Custom Model Code ---
# This dynamically loads your corrected HRM source code.
# Since the files are in the root, we import directly.
from hrm_act_v1 import HierarchicalReasoningModel_ACTV1
# --- 2. Load Artifacts ---
print("Loading artifacts...")
# Load the tokenizer
tokenizer = Tokenizer.from_file("tokenizer.json")
# Load the model configuration
with open('config.yaml', 'r') as f:
config_data = yaml.safe_load(f)
model_config = config_data['arch']
# Load the grant type mapping
with open('activity_code_map.json', 'r') as f:
activity_code_map = json.load(f)
# --- 3. Initialize the Model ---
print("Initializing model...")
# The model expects a dict, so we pass the Pydantic model's dict representation
# We also need to add other required keys from the root of the config
model_config.update({
'batch_size': config_data['global_batch_size'],
'seq_len': 512, # You may need to get this from your dataset metadata
'num_puzzle_identifiers': len(activity_code_map) + 1,
'vocab_size': tokenizer.get_vocab_size()
})
model = HierarchicalReasoningModel_ACTV1(config_dict=model_config)
# Load the fine-tuned weights
model.load_state_dict(torch.load('pytorch_model.bin', map_location='cpu'))
model.eval() # Set the model to evaluation mode
print("Model loaded successfully!")
# --- 4. Define the Inference Function ---
def optimize_abstract(draft_abstract, grant_type):
"""
Takes a draft abstract and grant type, runs the model, and returns the optimized text.
"""
if not draft_abstract or not grant_type:
return "Please provide both a draft abstract and a grant type."
try:
# Prepare inputs
tokenizer.enable_padding(length=512)
tokenizer.enable_truncation(max_length=512)
input_ids = tokenizer.encode(draft_abstract).ids
grant_type_id = activity_code_map.get(grant_type, 0) # Default to 0 if unknown
# Convert to PyTorch tensors
input_tensor = torch.tensor([input_ids], dtype=torch.long)
grant_tensor = torch.tensor([grant_type_id], dtype=torch.long)
# Create the batch dictionary that the model expects
batch = {
"inputs": input_tensor,
"puzzle_identifiers": grant_tensor,
# The model requires a 'labels' field, even for inference, so we provide a dummy one
"labels": torch.zeros_like(input_tensor)
}
# Run inference
with torch.no_grad():
carry = model.initial_carry(batch)
# The model runs in a loop; for inference, we run it for the max steps
for _ in range(model_config['halt_max_steps']):
carry, _ = model(carry=carry, batch=batch)
# Get the final logits from the carry state
final_logits = model.inner.lm_head(carry.inner_carry.z_H)[:, model.inner.puzzle_emb_len:]
predicted_ids = torch.argmax(final_logits, dim=-1).squeeze().tolist()
# Decode the output
optimized_text = tokenizer.decode(predicted_ids, skip_special_tokens=True)
return optimized_text
except Exception as e:
print(f"An error occurred during inference: {e}")
return f"Error: Could not process the abstract. Details: {e}"
# --- 5. Create the Gradio Interface ---
grant_type_choices = list(activity_code_map.keys())
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸš€ HRM Grant Abstract Optimizer")
gr.Markdown("Enter a draft abstract and select the grant type to get a version optimized by the fine-tuned Hierarchical Reasoning Model.")
with gr.Row():
with gr.Column():
draft_input = gr.Textbox(label="Draft Abstract", lines=15, placeholder="Paste your draft abstract here...")
grant_type = gr.Dropdown(label="Grant Type", choices=grant_type_choices, value=grant_type_choices[0] if grant_type_choices else None)
optimize_btn = gr.Button("Optimize Abstract", variant="primary")
with gr.Column():
output_text = gr.Textbox(label="Optimized Abstract", lines=17, interactive=False)
optimize_btn.click(
fn=optimize_abstract,
inputs=[draft_input, grant_type],
outputs=output_text
)
if __name__ == "__main__":
demo.launch()