File size: 12,303 Bytes
b829e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from typing import Tuple, List, Dict, Optional
from dataclasses import dataclass
import math

import torch
import torch.nn.functional as F
from torch import nn
from pydantic import BaseModel

from models.common import trunc_normal_init_
from models.layers import rms_norm, SwiGLU, Attention, RotaryEmbedding, CosSin, CastedEmbedding, CastedLinear
from models.sparse_embedding import CastedSparseEmbedding


@dataclass
class HierarchicalReasoningModel_ACTV1InnerCarry:
    z_H: torch.Tensor
    z_L: torch.Tensor


@dataclass
class HierarchicalReasoningModel_ACTV1Carry:
    inner_carry: HierarchicalReasoningModel_ACTV1InnerCarry
    
    steps: torch.Tensor
    halted: torch.Tensor
    
    current_data: Dict[str, torch.Tensor]


class HierarchicalReasoningModel_ACTV1Config(BaseModel):
    batch_size: int
    seq_len: int
    puzzle_emb_ndim: int = 0
    num_puzzle_identifiers: int
    vocab_size: int

    H_cycles: int
    L_cycles: int

    H_layers: int
    L_layers: int

    # Transformer config
    hidden_size: int
    expansion: float
    num_heads: int
    pos_encodings: str

    rms_norm_eps: float = 1e-5
    rope_theta: float = 10000.0
    
    # Halting Q-learning config
    halt_max_steps: int
    halt_exploration_prob: float

    forward_dtype: str = "bfloat16"


class HierarchicalReasoningModel_ACTV1Block(nn.Module):
    def __init__(self, config: HierarchicalReasoningModel_ACTV1Config) -> None:
        super().__init__()

        self.self_attn = Attention(
            hidden_size=config.hidden_size,
            head_dim=config.hidden_size // config.num_heads,
            num_heads=config.num_heads,
            num_key_value_heads=config.num_heads,
            causal=False
        )
        self.mlp = SwiGLU(
            hidden_size=config.hidden_size,
            expansion=config.expansion,
        )
        self.norm_eps = config.rms_norm_eps

    def forward(self, cos_sin: CosSin, hidden_states: torch.Tensor) -> torch.Tensor:
        # Post Norm
        # Self Attention
        hidden_states = rms_norm(hidden_states + self.self_attn(cos_sin=cos_sin, hidden_states=hidden_states), variance_epsilon=self.norm_eps)
        # Fully Connected
        hidden_states = rms_norm(hidden_states + self.mlp(hidden_states), variance_epsilon=self.norm_eps)
        return hidden_states


class HierarchicalReasoningModel_ACTV1ReasoningModule(nn.Module):
    def __init__(self, layers: List[HierarchicalReasoningModel_ACTV1Block]):
        super().__init__()

        self.layers = torch.nn.ModuleList(layers)

    def forward(self, hidden_states: torch.Tensor, input_injection: torch.Tensor, **kwargs) -> torch.Tensor:
        # Input injection (add)
        hidden_states = hidden_states + input_injection
        # Layers
        for layer in self.layers:
            hidden_states = layer(hidden_states=hidden_states, **kwargs)

        return hidden_states


class HierarchicalReasoningModel_ACTV1_Inner(nn.Module):
    def __init__(self, config: HierarchicalReasoningModel_ACTV1Config) -> None:
        super().__init__()
        self.config = config
        self.forward_dtype = getattr(torch, self.config.forward_dtype)

        # I/O
        self.embed_scale  = math.sqrt(self.config.hidden_size)
        embed_init_std = 1.0 / self.embed_scale

        self.embed_tokens = CastedEmbedding(self.config.vocab_size, self.config.hidden_size, init_std=embed_init_std, cast_to=self.forward_dtype)
        self.lm_head       = CastedLinear(self.config.hidden_size, self.config.vocab_size, bias=False)
        self.q_head        = CastedLinear(self.config.hidden_size, 2, bias=True)

        self.puzzle_emb_len = -(self.config.puzzle_emb_ndim // -self.config.hidden_size)  # ceil div
        if self.config.puzzle_emb_ndim > 0:
            # Zero init puzzle embeddings
            self.puzzle_emb = CastedSparseEmbedding(self.config.num_puzzle_identifiers, self.config.puzzle_emb_ndim,
                                                    batch_size=self.config.batch_size, init_std=0, cast_to=self.forward_dtype)

        # LM Blocks
        if self.config.pos_encodings == "rope":
            self.rotary_emb = RotaryEmbedding(dim=self.config.hidden_size // self.config.num_heads,
                                              max_position_embeddings=self.config.seq_len + self.puzzle_emb_len,
                                              base=self.config.rope_theta)
        elif self.config.pos_encodings == "learned":
            self.embed_pos = CastedEmbedding(self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, init_std=embed_init_std, cast_to=self.forward_dtype)
        else:
            raise NotImplementedError()

        # Reasoning Layers
        self.H_level = HierarchicalReasoningModel_ACTV1ReasoningModule(layers=[HierarchicalReasoningModel_ACTV1Block(self.config) for _i in range(self.config.H_layers)])
        self.L_level = HierarchicalReasoningModel_ACTV1ReasoningModule(layers=[HierarchicalReasoningModel_ACTV1Block(self.config) for _i in range(self.config.L_layers)])
        
        # --- CORRECTED CODE BLOCK ---
        # Initial states
        h_init_tensor = trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1)
        self.register_buffer('H_init', h_init_tensor)
        
        l_init_tensor = trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1)
        self.register_buffer('L_init', l_init_tensor)
        # --- END OF CORRECTION ---

        # Q head special init
        # Init Q to (almost) zero for faster learning during bootstrapping
        with torch.no_grad():
            self.q_head.weight.zero_()
            self.q_head.bias.fill_(-5)  # type: ignore

    def _input_embeddings(self, input: torch.Tensor, puzzle_identifiers: torch.Tensor):
        # Token embedding
        embedding = self.embed_tokens(input.to(torch.int32))

        # Puzzle embeddings
        if self.config.puzzle_emb_ndim > 0:
            puzzle_embedding = self.puzzle_emb(puzzle_identifiers)
            
            pad_count = self.puzzle_emb_len * self.config.hidden_size - puzzle_embedding.shape[-1]
            if pad_count > 0:
                puzzle_embedding = F.pad(puzzle_embedding, (0, pad_count))

            embedding = torch.cat((puzzle_embedding.view(-1, self.puzzle_emb_len, self.config.hidden_size), embedding), dim=-2)

        # Position embeddings
        if self.config.pos_encodings == "learned":
            # scale by 1/sqrt(2) to maintain forward variance
            embedding = 0.707106781 * (embedding + self.embed_pos.embedding_weight.to(self.forward_dtype))

        # Scale
        return self.embed_scale * embedding

    def empty_carry(self, batch_size: int):
        return HierarchicalReasoningModel_ACTV1InnerCarry(
            z_H=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
            z_L=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
        )
        
    def reset_carry(self, reset_flag: torch.Tensor, carry: HierarchicalReasoningModel_ACTV1InnerCarry):
        return HierarchicalReasoningModel_ACTV1InnerCarry(
            z_H=torch.where(reset_flag.view(-1, 1, 1), self.H_init, carry.z_H),
            z_L=torch.where(reset_flag.view(-1, 1, 1), self.L_init, carry.z_L),
        )

    def forward(self, carry: HierarchicalReasoningModel_ACTV1InnerCarry, batch: Dict[str, torch.Tensor]) -> Tuple[HierarchicalReasoningModel_ACTV1InnerCarry, torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        seq_info = dict(
            cos_sin=self.rotary_emb() if hasattr(self, "rotary_emb") else None,
        )

        # Input encoding
        input_embeddings = self._input_embeddings(batch["inputs"], batch["puzzle_identifiers"])

        # Forward iterations
        with torch.no_grad():
            z_H, z_L = carry.z_H, carry.z_L

            for _H_step in range(self.config.H_cycles):
                for _L_step in range(self.config.L_cycles):
                    if not ((_H_step == self.config.H_cycles - 1) and (_L_step == self.config.L_cycles - 1)):
                        z_L = self.L_level(z_L, z_H + input_embeddings, **seq_info)

                if not (_H_step == self.config.H_cycles - 1):
                    z_H = self.H_level(z_H, z_L, **seq_info)

        assert not z_H.requires_grad and not z_L.requires_grad

        # 1-step grad
        z_L = self.L_level(z_L, z_H + input_embeddings, **seq_info)
        z_H = self.H_level(z_H, z_L, **seq_info)

        # LM Outputs
        new_carry = HierarchicalReasoningModel_ACTV1InnerCarry(z_H=z_H.detach(), z_L=z_L.detach())  # New carry no grad
        output = self.lm_head(z_H)[:, self.puzzle_emb_len:]

        # Q head
        q_logits = self.q_head(z_H[:, 0]).to(torch.float32)
        
        return new_carry, output, (q_logits[..., 0], q_logits[..., 1])


class HierarchicalReasoningModel_ACTV1(nn.Module):
    """ACT wrapper."""

    def __init__(self, config_dict: dict):
        super().__init__()
        self.config = HierarchicalReasoningModel_ACTV1Config(**config_dict)
        self.inner = HierarchicalReasoningModel_ACTV1_Inner(self.config)

    @property
    def puzzle_emb(self):
        return self.inner.puzzle_emb

    def initial_carry(self, batch: Dict[str, torch.Tensor]):
        batch_size = batch["inputs"].shape[0]

        return HierarchicalReasoningModel_ACTV1Carry(
            inner_carry=self.inner.empty_carry(batch_size),  # Empty is expected, it will be reseted in first pass as all sequences are halted.
            
            steps=torch.zeros((batch_size, ), dtype=torch.int32),
            halted=torch.ones((batch_size, ), dtype=torch.bool),  # Default to halted
            
            current_data={k: torch.empty_like(v) for k, v in batch.items()}
        )
        
    def forward(self, carry: HierarchicalReasoningModel_ACTV1Carry, batch: Dict[str, torch.Tensor]) -> Tuple[HierarchicalReasoningModel_ACTV1Carry, Dict[str, torch.Tensor]]:
        # Update data, carry (removing halted sequences)
        new_inner_carry = self.inner.reset_carry(carry.halted, carry.inner_carry)
        
        new_steps = torch.where(carry.halted, 0, carry.steps)

        new_current_data = {k: torch.where(carry.halted.view((-1, ) + (1, ) * (batch[k].ndim - 1)), batch[k], v) for k, v in carry.current_data.items()}

        # Forward inner model
        new_inner_carry, logits, (q_halt_logits, q_continue_logits) = self.inner(new_inner_carry, new_current_data)

        outputs = {
            "logits": logits,
            "q_halt_logits": q_halt_logits,
            "q_continue_logits": q_continue_logits
        }
        
        with torch.no_grad():
            # Step
            new_steps = new_steps + 1
            is_last_step = new_steps >= self.config.halt_max_steps
            
            halted = is_last_step

            # if training, and ACT is enabled
            if self.training and (self.config.halt_max_steps > 1):
                # Halt signal
                # NOTE: During evaluation, always use max steps, this is to guarantee the same halting steps inside a batch for batching purposes
                halted = halted | (q_halt_logits > q_continue_logits)

                # Exploration
                min_halt_steps = (torch.rand_like(q_halt_logits) < self.config.halt_exploration_prob) * torch.randint_like(new_steps, low=2, high=self.config.halt_max_steps + 1)

                halted = halted & (new_steps >= min_halt_steps)

                # Compute target Q
                # NOTE: No replay buffer and target networks for computing target Q-value.
                # As batch_size is large, there're many parallel envs.
                # Similar concept as PQN https://arxiv.org/abs/2407.04811
                next_q_halt_logits, next_q_continue_logits = self.inner(new_inner_carry, new_current_data)[-1]
                
                outputs["target_q_continue"] = torch.sigmoid(torch.where(is_last_step, next_q_halt_logits, torch.maximum(next_q_halt_logits, next_q_continue_logits)))

        return HierarchicalReasoningModel_ACTV1Carry(new_inner_carry, new_steps, halted, new_current_data), outputs