Spaces:
Paused
Paused
| import gradio as gr | |
| import spaces | |
| from mistral_inference.transformer import Transformer | |
| from mistral_inference.generate import generate | |
| from mistral_common.tokens.tokenizers.mistral import MistralTokenizer | |
| from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk | |
| from mistral_common.protocol.instruct.request import ChatCompletionRequest | |
| from huggingface_hub import snapshot_download | |
| from pathlib import Path | |
| # モデルのダウンロードと準備 | |
| mistral_models_path = Path.home().joinpath('mistral_models', 'Pixtral') | |
| mistral_models_path.mkdir(parents=True, exist_ok=True) | |
| snapshot_download(repo_id="mistral-community/pixtral-12b-240910", | |
| allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], | |
| local_dir=mistral_models_path) | |
| # トークナイザーとモデルのロード | |
| tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json") | |
| model = Transformer.from_folder(mistral_models_path) | |
| # 推論処理 | |
| def mistral_inference(prompt, image_url): | |
| completion_request = ChatCompletionRequest( | |
| messages=[UserMessage(content=[ImageURLChunk(image_url=image_url), TextChunk(text=prompt)])] | |
| ) | |
| encoded = tokenizer.encode_chat_completion(completion_request) | |
| images = encoded.images | |
| tokens = encoded.tokens | |
| out_tokens, _ = generate([tokens], model, images=[images], max_tokens=1024, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) | |
| result = tokenizer.decode(out_tokens[0]) | |
| return result | |
| # Gradio インターフェース | |
| def process_input(text, image_url): | |
| result = mistral_inference(text, image_url) | |
| return result, image_url | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Pixtralモデルによる画像説明生成") | |
| with gr.Row(): | |
| text_input = gr.Textbox(label="テキストプロンプト", placeholder="例: Describe the image.") | |
| image_input = gr.Textbox(label="画像URL", placeholder="例: https://example.com/image.png") | |
| result_output = gr.Textbox(label="モデルの出力結果", lines=8, max_lines=20) # 高さを500ピクセルに相当するように調整 | |
| image_output = gr.Image(label="入力された画像", type="auto") # 入力画像URLを表示するための場所 | |
| submit_button = gr.Button("推論を実行") | |
| # ボタンをクリックすると、モデルの結果と画像を表示 | |
| submit_button.click(process_input, inputs=[text_input, image_input], outputs=[result_output, image_output]) | |
| demo.launch() |