File size: 2,952 Bytes
56ff037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from transformers import (
    AutoTokenizer,
    AutoModelForSequenceClassification,
    Trainer,
    TrainingArguments,
)
from config import Config
import json
from datasets import Dataset
import torch


class QuestionClassifier:
    def __init__(
        self, model_name="distilbert-base-multilingual-cased", initialized_train=True
    ):
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model_name = model_name
        self.category2id = None
        self.category2id = None
        if initialized_train:
            self.train()

    def train(self, json_path=Config.EXMAPLES_JSON, num_epochs=3):
        # * Cargar ejemplos
        with open(json_path, "r", encoding="utf-8") as f:
            examples = json.load(f)
        texts, labels, category2id = self._prepare_supervised_data(examples)
        self.category2id = category2id
        self.id2category = {value: key for key, value in category2id.items()}
        self.model = AutoModelForSequenceClassification.from_pretrained(
            self.model_name, num_labels=len(category2id)
        )

        encodings = self.tokenizer(texts, truncation=True, padding=True)
        dataset = Dataset.from_dict(
            {
                "input_ids": encodings["input_ids"],
                "attention_mask": encodings["attention_mask"],
                "labels": labels,
            }
        )

        training_args = TrainingArguments(
            output_dir="./results",
            per_device_train_batch_size=8,
            num_train_epochs=num_epochs,
            logging_steps=1,
            # logging_strategy="steps",
            report_to="none",
            save_strategy="no",
            remove_unused_columns=False,
            eval_strategy="no",
        )

        # 4. Trainer
        trainer = Trainer(model=self.model, args=training_args, train_dataset=dataset)

        trainer.train()

    def _prepare_supervised_data(self, examples):
        category2id = {cat: i for i, cat in enumerate(examples.keys())}
        texts = []
        labels = []
        for category, items in examples.items():
            for item in items:
                texts.append(item["pregunta"])
                labels.append(category2id[category])
        return texts, labels, category2id

    def predict(self, question: str):
        device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model.to(device)

        inputs = self.tokenizer(
            question, return_tensors="pt", truncation=True, padding=True
        )

        inputs = {k: v.to(device) for k, v in inputs.items()}

        with torch.no_grad():
            outputs = self.model(**inputs)
            predicted_class_id = outputs.logits.argmax().item()

        return self.id2category[predicted_class_id]


# * FORMA DE USARSE
# qc = QuestionClassifier()
# qc.train()

# categoria = qc.predict("Dame los productos más vendidos")
# print(categoria)  # → 'PRODUCTOS'