Spaces:
Sleeping
Sleeping
# app.py | |
import gradio as gr | |
import torch | |
from threading import Thread | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
# Choose any chat model with a chat template; Zephyr works well: | |
MODEL_NAME = "google/gemma-3-270m-it" | |
# Load model + tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
torch_dtype="auto", | |
device_map="auto", | |
) | |
def build_chat(system_message: str, history: list[tuple[str, str]], user_message: str): | |
"""Convert Gradio history into a list of chat messages for apply_chat_template.""" | |
messages = [] | |
if system_message: | |
messages.append({"role": "system", "content": system_message}) | |
for u, a in history: | |
if u: | |
messages.append({"role": "user", "content": u}) | |
if a: | |
messages.append({"role": "assistant", "content": a}) | |
messages.append({"role": "user", "content": user_message}) | |
return messages | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# 1) Build chat messages and tokenize using the model's chat template | |
messages = build_chat(system_message, history, message) | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to(model.device) | |
# 2) Stream generation | |
streamer = TextIteratorStreamer( | |
tokenizer, | |
skip_prompt=True, | |
skip_special_tokens=True, | |
) | |
gen_kwargs = dict( | |
input_ids=inputs, | |
max_new_tokens=int(max_tokens), | |
do_sample=True, | |
temperature=float(temperature), | |
top_p=float(top_p), | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.eos_token_id, | |
streamer=streamer, | |
) | |
# Run generate() in a background thread while we yield chunks | |
thread = Thread(target=model.generate, kwargs=gen_kwargs) | |
thread.start() | |
response = "" | |
for new_text in streamer: | |
response += new_text | |
yield response | |
thread.join() | |
# Gradio UI (same controls as your example) | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |