DynamicVemesv2 / app.py
Taino's picture
Update app.py
90fc73e verified
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
import cv2
import numpy as np
import json
import os
from datetime import datetime
from ultralytics import YOLO
from insightface.app import FaceAnalysis
import torchreid
import torch
import logging
import shutil
import tempfile
import uuid
# ========== Logging Configuration ==========
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s] [%(levelname)s] %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# ========== Configuration ==========
DETECTION_THRESHOLD = 0.75
# Create output directory for Gradio
OUTPUT_DIR = os.path.join(os.getcwd(), "outputs")
os.makedirs(OUTPUT_DIR, exist_ok=True)
# ========== Video Processing Class ==========
class VideoProcessor:
def __init__(self):
try:
self.model = YOLO('detection.pt')
self.face_app = FaceAnalysis(name='buffalo_l', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.face_app.prepare(ctx_id=0)
self.reid_extractor = torchreid.utils.FeatureExtractor(
model_name='osnet_x0_25',
model_path=None,
device='cuda' if torch.cuda.is_available() else 'cpu'
)
self.models_loaded = True
logger.info("Models loaded successfully.")
except Exception as e:
logger.exception("Model loading failed.")
self.models_loaded = False
self.reset_tracking()
def reset_tracking(self):
self.known_embeddings = []
self.known_ids = []
self.next_global_id = 1
self.track_to_global = {}
self.tracking_data = {
"metadata": {
"total_frames": 0,
"total_people": 0,
"id_mapping": {}
},
"frames": []
}
logger.info("Tracking state reset.")
def extract_embeddings(self, person_crop):
face_embedding, body_embedding = None, None
try:
faces = self.face_app.get(person_crop)
if faces:
face_embedding = faces[0].embedding
except Exception:
logger.debug("Face embedding failed.")
try:
body_input = cv2.resize(person_crop, (128, 256))
body_input = cv2.cvtColor(body_input, cv2.COLOR_BGR2RGB)
body_embedding = self.reid_extractor(body_input)[0].cpu().numpy()
except Exception:
logger.debug("Body embedding failed.")
if face_embedding is not None and body_embedding is not None:
return np.concatenate((face_embedding, body_embedding)).astype(np.float32)
elif face_embedding is not None:
return face_embedding.astype(np.float32)
elif body_embedding is not None:
return body_embedding.astype(np.float32)
return None
def assign_global_id(self, embedding, track_id):
if embedding is None:
return self.track_to_global.get(track_id, f"T{track_id}")
match_found = False
if self.known_embeddings:
matching_embeddings = [
(emb, gid) for emb, gid in zip(self.known_embeddings, self.known_ids)
if emb.shape[0] == embedding.shape[0]
]
if matching_embeddings:
embs, gids = zip(*matching_embeddings)
embs = np.array(embs)
sims = np.dot(embs, embedding) / (
np.linalg.norm(embs, axis=1) * np.linalg.norm(embedding) + 1e-6
)
best_match = np.argmax(sims)
if sims[best_match] > 0.6:
global_id = gids[best_match]
match_found = True
if not match_found:
global_id = self.next_global_id
self.next_global_id += 1
self.known_embeddings.append(embedding)
self.known_ids.append(global_id)
if track_id is not None:
self.track_to_global[track_id] = global_id
return global_id
def process_video(self, input_video_path, progress_callback=None):
if not self.models_loaded:
raise Exception("Models not loaded properly")
self.reset_tracking()
# Create output files with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
# Use the OUTPUT_DIR instead of temp directory
output_video_path = os.path.join(OUTPUT_DIR, f"tracked_video_{timestamp}_{unique_id}.mp4")
output_json_path = os.path.join(OUTPUT_DIR, f"tracking_data_{timestamp}_{unique_id}.json")
cap = cv2.VideoCapture(input_video_path)
if not cap.isOpened():
raise Exception("Could not open video file")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Use H.264 codec for better compatibility and add proper video codec
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Changed from 'mp4v' to 'H264'
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
# Verify video writer is properly initialized
if not out.isOpened():
logger.warning("H264 codec failed, trying XVID")
fourcc = cv2.VideoWriter_fourcc(*'XVID')
output_video_path = output_video_path.replace('.mp4', '.avi')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
if not out.isOpened():
logger.warning("XVID codec failed, trying mp4v")
fourcc = cv2.VideoWriter_fourcc(*'H264')
output_video_path = output_video_path.replace('.avi', '.mp4')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if progress_callback:
progress_callback(frame_count / total_frames, f"Processing frame {frame_count}/{total_frames}")
frame_data = {"frame": frame_count, "people": []}
try:
results = self.model.track(
frame, tracker="bytetrack.yaml", persist=True, verbose=False, conf=DETECTION_THRESHOLD
)
for result in results:
if result.boxes is not None:
boxes = result.boxes.xyxy.cpu().numpy()
confidences = result.boxes.conf.cpu().numpy()
track_ids = result.boxes.id.int().cpu().tolist() if result.boxes.id is not None else [None] * len(boxes)
for box, conf, track_id in zip(boxes, confidences, track_ids):
x1, y1, x2, y2 = map(int, box)
person_crop = frame[y1:y2, x1:x2]
if person_crop.size > 0:
embedding = self.extract_embeddings(person_crop)
global_id = self.assign_global_id(embedding, track_id)
frame_data["people"].append({
"person_id": global_id,
"center_x": (x1 + x2) / 2,
"center_y": (y1 + y2) / 2,
"confidence": float(conf),
"bbox": {"x1": float(x1), "y1": float(y1), "x2": float(x2), "y2": float(y2)}
})
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, f"ID {global_id}", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
except Exception as e:
logger.exception(f"Error processing frame {frame_count}.")
self.tracking_data["frames"].append(frame_data)
out.write(frame)
cap.release()
out.release()
# Verify the output file was created and has content
if not os.path.exists(output_video_path) or os.path.getsize(output_video_path) == 0:
raise Exception("Output video file was not created properly")
self.tracking_data["metadata"]["total_frames"] = frame_count
self.tracking_data["metadata"]["total_people"] = len(set(self.known_ids))
self.tracking_data["metadata"]["id_mapping"] = {str(k): v for k, v in self.track_to_global.items()}
# Save JSON file
with open(output_json_path, 'w') as f:
json.dump(self.tracking_data, f, indent=2)
logger.info(f"Video processing completed. Saved to {output_video_path}")
logger.info(f"Video file size: {os.path.getsize(output_video_path)} bytes")
return output_video_path, output_json_path
# ========== Processor ==========
processor = VideoProcessor()
# ========== Gradio Handler ==========
def process_video_gradio(input_video, progress=gr.Progress()):
if input_video is None:
return None, None, "Please upload a video file."
try:
def progress_callback(prog, message):
progress(prog, desc=message)
# Process video
output_video_path, output_json_path = processor.process_video(input_video, progress_callback)
# Verify files exist and are accessible
if not os.path.exists(output_video_path):
raise Exception(f"Output video not found at {output_video_path}")
if not os.path.exists(output_json_path):
raise Exception(f"Output JSON not found at {output_json_path}")
# Read tracking data for stats
with open(output_json_path, 'r') as f:
data = json.load(f)
stats = f"""
**Processing Complete!** βœ…
- **Total Frames Processed:** {data['metadata']['total_frames']}
- **Total People Detected:** {data['metadata']['total_people']}
- **Unique IDs Assigned:** {len(data['metadata']['id_mapping'])}
- **Output Video Size:** {os.path.getsize(output_video_path) / (1024*1024):.1f} MB
πŸ“Ή **Output video** is ready for download
πŸ“„ **JSON tracking data** contains frame-by-frame detection results
"""
logger.info(f"Returning video path: {output_video_path}")
logger.info(f"Video exists: {os.path.exists(output_video_path)}")
return output_video_path, output_json_path, stats
except Exception as e:
logger.exception("Video processing failed.")
return None, None, f"❌ **Error processing video:** {str(e)}"
# ========== Gradio Interface ==========
def create_interface():
with gr.Blocks(title="Video Person Detection & Tracking", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸŽ₯ Video Person Detection & Tracking with ReID")
gr.Markdown("Upload a video to detect and track people using YOLOv8, InsightFace, and ReID models for consistent person identification across frames.")
with gr.Row():
with gr.Column(scale=1):
input_video = gr.Video(
label="πŸ“‚ Upload Input Video",
height=400,
interactive=True
)
process_btn = gr.Button(
"πŸš€ Process Video",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
output_video = gr.Video(
label="🎬 Processed Video (with tracking)",
height=400,
interactive=False,
show_download_button=True # Enable download button
)
download_json = gr.File(
label="πŸ“Š Download Tracking Data (JSON)",
interactive=False
)
with gr.Row():
status_text = gr.Markdown("πŸ“€ Upload a video and click **'Process Video'** to start tracking people.")
# Event handler
process_btn.click(
fn=process_video_gradio,
inputs=[input_video],
outputs=[output_video, download_json, status_text],
show_progress=True
)
# Additional information
with gr.Accordion("πŸ“– How it works", open=False):
gr.Markdown("""
### πŸ”§ **Technology Stack:**
- **YOLOv8:** Real-time person detection
- **ByteTrack:** Multi-object tracking algorithm
- **InsightFace:** Facial feature extraction for person identification
- **OSNet:** Full-body re-identification features
### πŸ“‹ **Process:**
1. **Detection:** YOLOv8 detects people in each frame
2. **Tracking:** ByteTrack assigns temporary tracking IDs
3. **Feature Extraction:** InsightFace + OSNet extract identifying features
4. **Re-identification:** Combines face and body features for consistent global IDs
5. **Output:** Generates annotated video + detailed JSON tracking data
### πŸ“ **Supported Formats:**
- **Input:** MP4, AVI, MOV, WEBM
- **Output:** MP4 video + JSON metadata
""")
with gr.Accordion("βš™οΈ Model Configuration", open=False):
gr.Markdown(f"""
- **Detection Threshold:** {DETECTION_THRESHOLD}
- **Similarity Threshold:** 0.6 (for person re-identification)
- **Device:** {"CUDA" if torch.cuda.is_available() else "CPU"}
- **Output Directory:** {OUTPUT_DIR}
""")
with gr.Accordion("πŸ”§ Troubleshooting", open=False):
gr.Markdown("""
**If video doesn't display:**
1. Check if the output file exists in the outputs directory
2. Try downloading the video manually
3. Ensure proper video codec support
**Common issues:**
- Large video files may take time to load
- Some browsers may not support certain video formats
- Network issues can affect video streaming
""")
return demo
# ========== Launch ==========
if __name__ == "__main__":
demo = create_interface()
# Add file serving for outputs directory
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=True
)