|
"""
|
|
Used to transcribe all audio files in one folder into another folder.
|
|
e.g.
|
|
Directory structure:
|
|
--pre_data_root
|
|
----SP_1
|
|
------01.wav
|
|
------02.wav
|
|
------......
|
|
----SP_2
|
|
------01.wav
|
|
------02.wav
|
|
------......
|
|
Use
|
|
python tools/whisper_asr.py --audio-dir pre_data_root/SP_1 --save-dir data/SP_1
|
|
to transcribe the first speaker.
|
|
|
|
Use
|
|
python tools/whisper_asr.py --audio-dir pre_data_root/SP_2 --save-dir data/SP_2
|
|
to transcribe the second speaker.
|
|
|
|
Note: Be aware of your audio sample rate, which defaults to 44.1kHz.
|
|
"""
|
|
|
|
import re
|
|
from pathlib import Path
|
|
|
|
import click
|
|
import soundfile as sf
|
|
from faster_whisper import WhisperModel
|
|
from loguru import logger
|
|
from pydub import AudioSegment
|
|
from tqdm import tqdm
|
|
|
|
from tools.file import AUDIO_EXTENSIONS, list_files
|
|
|
|
|
|
@click.command()
|
|
@click.option("--model-size", default="large-v3", help="Size of the Whisper model")
|
|
@click.option(
|
|
"--compute-type",
|
|
default="float16",
|
|
help="Computation Precision of the Whisper model [float16 / int8_float16 / int8]",
|
|
)
|
|
@click.option("--audio-dir", required=True, help="Directory containing audio files")
|
|
@click.option(
|
|
"--save-dir", required=True, help="Directory to save processed audio files"
|
|
)
|
|
@click.option(
|
|
"--sample-rate",
|
|
default=44100,
|
|
type=int,
|
|
help="Output sample rate, default to input sample rate",
|
|
)
|
|
@click.option("--device", default="cuda", help="Device to use [cuda / cpu]")
|
|
@click.option("--language", default="auto", help="Language of the transcription")
|
|
@click.option("--initial-prompt", default=None, help="Initial prompt for transcribing")
|
|
def main(
|
|
model_size,
|
|
compute_type,
|
|
audio_dir,
|
|
save_dir,
|
|
sample_rate,
|
|
device,
|
|
language,
|
|
initial_prompt,
|
|
):
|
|
logger.info("Loading / Downloading Faster Whisper model...")
|
|
|
|
model = WhisperModel(
|
|
model_size,
|
|
device=device,
|
|
compute_type=compute_type,
|
|
download_root="faster_whisper",
|
|
)
|
|
|
|
logger.info("Model loaded.")
|
|
|
|
save_path = Path(save_dir)
|
|
save_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
audio_files = list_files(
|
|
path=audio_dir, extensions=AUDIO_EXTENSIONS, recursive=True
|
|
)
|
|
|
|
for file_path in tqdm(audio_files, desc="Processing audio file"):
|
|
file_stem = file_path.stem
|
|
file_suffix = file_path.suffix
|
|
|
|
rel_path = Path(file_path).relative_to(audio_dir)
|
|
(save_path / rel_path.parent).mkdir(parents=True, exist_ok=True)
|
|
|
|
audio = AudioSegment.from_file(file_path)
|
|
|
|
segments, info = model.transcribe(
|
|
file_path,
|
|
beam_size=5,
|
|
language=None if language == "auto" else language,
|
|
initial_prompt=initial_prompt,
|
|
)
|
|
|
|
print(
|
|
"Detected language '%s' with probability %f"
|
|
% (info.language, info.language_probability)
|
|
)
|
|
print("Total len(ms): ", len(audio))
|
|
|
|
whole_text = None
|
|
for segment in segments:
|
|
id, start, end, text = (
|
|
segment.id,
|
|
segment.start,
|
|
segment.end,
|
|
segment.text,
|
|
)
|
|
print("Segment %03d [%.2fs -> %.2fs] %s" % (id, start, end, text))
|
|
if not whole_text:
|
|
whole_text = text
|
|
else:
|
|
whole_text += ", " + text
|
|
|
|
whole_text += "."
|
|
|
|
audio_save_path = save_path / rel_path.parent / f"{file_stem}{file_suffix}"
|
|
audio.export(audio_save_path, format=file_suffix[1:])
|
|
print(f"Exported {audio_save_path}")
|
|
|
|
transcript_save_path = save_path / rel_path.parent / f"{file_stem}.lab"
|
|
with open(
|
|
transcript_save_path,
|
|
"w",
|
|
encoding="utf-8",
|
|
) as f:
|
|
f.write(whole_text)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
exit(0)
|
|
|
|
audio = AudioSegment.from_wav(
|
|
r"D:\PythonProject\原神语音中文\胡桃\vo_hutao_draw_appear.wav"
|
|
)
|
|
|
|
model_size = "large-v3"
|
|
|
|
model = WhisperModel(
|
|
model_size,
|
|
device="cuda",
|
|
compute_type="float16",
|
|
download_root="faster_whisper",
|
|
)
|
|
|
|
segments, info = model.transcribe(
|
|
r"D:\PythonProject\原神语音中文\胡桃\vo_hutao_draw_appear.wav",
|
|
beam_size=5,
|
|
)
|
|
|
|
print(
|
|
"Detected language '%s' with probability %f"
|
|
% (info.language, info.language_probability)
|
|
)
|
|
print("Total len(ms): ", len(audio))
|
|
|
|
for i, segment in enumerate(segments):
|
|
print(
|
|
"Segment %03d [%.2fs -> %.2fs] %s"
|
|
% (i, segment.start, segment.end, segment.text)
|
|
)
|
|
start_ms = int(segment.start * 1000)
|
|
end_ms = int(segment.end * 1000)
|
|
segment_audio = audio[start_ms:end_ms]
|
|
segment_audio.export(f"segment_{i:03d}.wav", format="wav")
|
|
print(f"Exported segment_{i:03d}.wav")
|
|
|
|
print("All segments have been exported.")
|
|
|