|
import random
|
|
from multiprocessing import Pool
|
|
from pathlib import Path
|
|
|
|
import click
|
|
import librosa
|
|
import torch.nn.functional as F
|
|
import torchaudio
|
|
from tqdm import tqdm
|
|
|
|
from tools.file import AUDIO_EXTENSIONS, list_files
|
|
|
|
threshold = 10 ** (-50 / 20.0)
|
|
|
|
|
|
def process(file):
|
|
waveform, sample_rate = torchaudio.load(str(file), backend="sox")
|
|
if waveform.size(0) > 1:
|
|
waveform = waveform.mean(dim=0, keepdim=True)
|
|
|
|
loudness = librosa.feature.rms(
|
|
y=waveform.numpy().squeeze(), frame_length=2048, hop_length=512, center=True
|
|
)[0]
|
|
|
|
for i in range(len(loudness) - 1, 0, -1):
|
|
if loudness[i] > threshold:
|
|
break
|
|
|
|
end_silent_time = (len(loudness) - i) * 512 / sample_rate
|
|
|
|
if end_silent_time <= 0.3:
|
|
random_time = random.uniform(0.3, 0.7) - end_silent_time
|
|
waveform = F.pad(
|
|
waveform, (0, int(random_time * sample_rate)), mode="constant", value=0
|
|
)
|
|
|
|
for i in range(len(loudness)):
|
|
if loudness[i] > threshold:
|
|
break
|
|
|
|
start_silent_time = i * 512 / sample_rate
|
|
|
|
if start_silent_time > 0.02:
|
|
waveform = waveform[:, int((start_silent_time - 0.02) * sample_rate) :]
|
|
|
|
torchaudio.save(uri=str(file), src=waveform, sample_rate=sample_rate)
|
|
|
|
|
|
@click.command()
|
|
@click.argument("source", type=Path)
|
|
@click.option("--num-workers", type=int, default=12)
|
|
def main(source, num_workers):
|
|
files = list(list_files(source, AUDIO_EXTENSIONS, recursive=True))
|
|
|
|
with Pool(num_workers) as p:
|
|
list(tqdm(p.imap_unordered(process, files), total=len(files)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|