|
import math
|
|
|
|
|
|
def get_cosine_schedule_with_warmup_lr_lambda(
|
|
current_step: int,
|
|
*,
|
|
num_warmup_steps: int | float,
|
|
num_training_steps: int,
|
|
num_cycles: float = 0.5,
|
|
final_lr_ratio: float = 0.0,
|
|
):
|
|
if 0 < num_warmup_steps < 1:
|
|
num_warmup_steps = int(num_warmup_steps * num_training_steps)
|
|
|
|
if current_step < num_warmup_steps:
|
|
return float(current_step) / float(max(1, num_warmup_steps))
|
|
|
|
progress = float(current_step - num_warmup_steps) / float(
|
|
max(1, num_training_steps - num_warmup_steps)
|
|
)
|
|
|
|
return max(
|
|
final_lr_ratio,
|
|
0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)),
|
|
)
|
|
|
|
|
|
def get_constant_schedule_with_warmup_lr_lambda(
|
|
current_step: int,
|
|
*,
|
|
num_warmup_steps: int | float,
|
|
num_training_steps: int | None = None,
|
|
):
|
|
if 0 < num_warmup_steps < 1:
|
|
num_warmup_steps = int(num_warmup_steps * num_training_steps)
|
|
|
|
if current_step < num_warmup_steps:
|
|
return float(current_step) / float(max(1, num_warmup_steps))
|
|
|
|
return 1.0
|
|
|