|
from typing import Any, Optional
|
|
|
|
import lightning as L
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from lightning.pytorch.utilities.types import OptimizerLRScheduler
|
|
|
|
import fish_speech.utils as utils
|
|
from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID
|
|
from fish_speech.models.text2semantic.llama import NaiveTransformer
|
|
|
|
log = utils.RankedLogger(__name__, rank_zero_only=True)
|
|
|
|
|
|
class TextToSemantic(L.LightningModule):
|
|
def __init__(
|
|
self,
|
|
model: NaiveTransformer,
|
|
optimizer: Any,
|
|
lr_scheduler: Any,
|
|
):
|
|
super().__init__()
|
|
|
|
self.model = model
|
|
self.optimizer_builder = optimizer
|
|
self.lr_scheduler_builder = lr_scheduler
|
|
|
|
def forward(self, x):
|
|
return self.model(x)
|
|
|
|
def on_save_checkpoint(self, checkpoint):
|
|
|
|
state_dict = checkpoint["state_dict"]
|
|
use_lora = any("lora" in name for name in state_dict.keys())
|
|
if not use_lora:
|
|
return
|
|
|
|
for name in list(state_dict.keys()):
|
|
if "lora" not in name:
|
|
state_dict.pop(name)
|
|
|
|
def configure_optimizers(self) -> OptimizerLRScheduler:
|
|
|
|
weight_decay_parameters, other_parameters = [], []
|
|
for name, param in self.named_parameters():
|
|
if ".bias" in name or "norm.weight" in name or ".embeddings." in name:
|
|
other_parameters.append(param)
|
|
else:
|
|
weight_decay_parameters.append(param)
|
|
|
|
optimizer = self.optimizer_builder(
|
|
[
|
|
{"params": weight_decay_parameters},
|
|
{"params": other_parameters, "weight_decay": 0.0},
|
|
]
|
|
)
|
|
|
|
|
|
for i in optimizer.param_groups:
|
|
log.info(
|
|
f"Set weight decay: {i['weight_decay']} for {len(i['params'])} parameters"
|
|
)
|
|
|
|
lr_scheduler = self.lr_scheduler_builder(optimizer)
|
|
|
|
return {
|
|
"optimizer": optimizer,
|
|
"lr_scheduler": {
|
|
"scheduler": lr_scheduler,
|
|
"interval": "step",
|
|
},
|
|
}
|
|
|
|
|
|
def get_batch_logps(
|
|
self,
|
|
logits: torch.FloatTensor,
|
|
labels: torch.LongTensor,
|
|
average_log_prob: bool = False,
|
|
) -> torch.FloatTensor:
|
|
"""Compute the log probabilities of the given labels under the given logits.
|
|
|
|
Args:
|
|
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, codebook_size, vocab_size)
|
|
labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length, codebook_size)
|
|
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.
|
|
|
|
Returns:
|
|
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
|
|
"""
|
|
assert logits.shape[:-1] == labels.shape
|
|
|
|
labels = labels.clone()
|
|
loss_mask = labels != -100
|
|
|
|
|
|
labels[labels == -100] = 0
|
|
|
|
per_token_logps = torch.gather(
|
|
logits.log_softmax(-1), dim=-1, index=labels.unsqueeze(-1)
|
|
).squeeze(-1)
|
|
|
|
if average_log_prob:
|
|
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
|
|
else:
|
|
return (per_token_logps * loss_mask).sum(-1)
|
|
|
|
def _step(self, batch, batch_idx, stage: str):
|
|
is_train = stage == "train"
|
|
|
|
if is_train:
|
|
|
|
|
|
self.model.train()
|
|
|
|
|
|
labels = batch["labels"]
|
|
outputs = self.model(
|
|
inp=batch["inputs"],
|
|
key_padding_mask=batch["attention_masks"],
|
|
)
|
|
token_logits = outputs.token_logits
|
|
codebook_logits = outputs.codebook_logits
|
|
|
|
|
|
base_loss = F.cross_entropy(
|
|
token_logits.view(-1, token_logits.size(-1)),
|
|
labels[:, 0].reshape(-1),
|
|
ignore_index=-100,
|
|
)
|
|
|
|
codebook_labels = labels[:, 1 : 1 + self.model.config.num_codebooks].mT
|
|
semantic_loss = F.cross_entropy(
|
|
codebook_logits.view(-1, codebook_logits.size(-1)),
|
|
codebook_labels.reshape(-1),
|
|
ignore_index=-100,
|
|
)
|
|
|
|
loss = base_loss + semantic_loss
|
|
|
|
self.log(
|
|
f"{stage}/loss",
|
|
loss,
|
|
on_step=is_train,
|
|
on_epoch=not is_train,
|
|
prog_bar=True,
|
|
logger=True,
|
|
sync_dist=not is_train,
|
|
)
|
|
|
|
self.log(
|
|
f"{stage}/base_loss",
|
|
base_loss,
|
|
on_step=is_train,
|
|
on_epoch=not is_train,
|
|
prog_bar=False,
|
|
logger=True,
|
|
sync_dist=not is_train,
|
|
)
|
|
|
|
self.log(
|
|
f"{stage}/semantic_loss",
|
|
semantic_loss,
|
|
on_step=is_train,
|
|
on_epoch=not is_train,
|
|
prog_bar=False,
|
|
logger=True,
|
|
sync_dist=not is_train,
|
|
)
|
|
|
|
|
|
accuracy = self.get_accuracy(codebook_logits, codebook_labels)
|
|
self.log(
|
|
f"{stage}/top_5_accuracy",
|
|
accuracy,
|
|
on_step=is_train,
|
|
on_epoch=not is_train,
|
|
prog_bar=True,
|
|
logger=True,
|
|
sync_dist=not is_train,
|
|
)
|
|
|
|
return loss
|
|
|
|
def get_accuracy(self, logits, labels):
|
|
mask = (labels != -100) & (labels != CODEBOOK_PAD_TOKEN_ID)
|
|
if mask.sum() == 0:
|
|
return torch.tensor(0.0, device=logits.device)
|
|
|
|
_, indices = logits.topk(5, dim=-1)
|
|
correct = indices.eq(labels.unsqueeze(-1))
|
|
correct[~mask] = 0
|
|
correct = correct.sum()
|
|
accuracy = correct / mask.sum()
|
|
|
|
return accuracy
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
return self._step(batch, batch_idx, "train")
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
return self._step(batch, batch_idx, "val")
|
|
|