|
import base64
|
|
import io
|
|
import json
|
|
import queue
|
|
import random
|
|
import sys
|
|
import traceback
|
|
import wave
|
|
from argparse import ArgumentParser
|
|
from http import HTTPStatus
|
|
from pathlib import Path
|
|
from typing import Annotated, Any, Literal, Optional
|
|
|
|
import numpy as np
|
|
import ormsgpack
|
|
import pyrootutils
|
|
import soundfile as sf
|
|
import torch
|
|
import torchaudio
|
|
from baize.datastructures import ContentType
|
|
from kui.asgi import (
|
|
Body,
|
|
FactoryClass,
|
|
HTTPException,
|
|
HttpRequest,
|
|
HttpView,
|
|
JSONResponse,
|
|
Kui,
|
|
OpenAPI,
|
|
StreamResponse,
|
|
)
|
|
from kui.asgi.routing import MultimethodRoutes
|
|
from loguru import logger
|
|
from pydantic import BaseModel, Field, conint
|
|
|
|
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
|
|
|
|
|
|
from fish_speech.models.vqgan.modules.firefly import FireflyArchitecture
|
|
from fish_speech.text.chn_text_norm.text import Text as ChnNormedText
|
|
from fish_speech.utils import autocast_exclude_mps
|
|
from tools.commons import ServeReferenceAudio, ServeTTSRequest
|
|
from tools.file import AUDIO_EXTENSIONS, audio_to_bytes, list_files, read_ref_text
|
|
from tools.llama.generate import (
|
|
GenerateRequest,
|
|
GenerateResponse,
|
|
WrappedGenerateResponse,
|
|
launch_thread_safe_queue,
|
|
)
|
|
from tools.vqgan.inference import load_model as load_decoder_model
|
|
|
|
|
|
def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
|
|
buffer = io.BytesIO()
|
|
|
|
with wave.open(buffer, "wb") as wav_file:
|
|
wav_file.setnchannels(channels)
|
|
wav_file.setsampwidth(bit_depth // 8)
|
|
wav_file.setframerate(sample_rate)
|
|
|
|
wav_header_bytes = buffer.getvalue()
|
|
buffer.close()
|
|
return wav_header_bytes
|
|
|
|
|
|
|
|
async def http_execption_handler(exc: HTTPException):
|
|
return JSONResponse(
|
|
dict(
|
|
statusCode=exc.status_code,
|
|
message=exc.content,
|
|
error=HTTPStatus(exc.status_code).phrase,
|
|
),
|
|
exc.status_code,
|
|
exc.headers,
|
|
)
|
|
|
|
|
|
async def other_exception_handler(exc: "Exception"):
|
|
traceback.print_exc()
|
|
|
|
status = HTTPStatus.INTERNAL_SERVER_ERROR
|
|
return JSONResponse(
|
|
dict(statusCode=status, message=str(exc), error=status.phrase),
|
|
status,
|
|
)
|
|
|
|
|
|
def load_audio(reference_audio, sr):
|
|
if len(reference_audio) > 255 or not Path(reference_audio).exists():
|
|
audio_data = reference_audio
|
|
reference_audio = io.BytesIO(audio_data)
|
|
|
|
waveform, original_sr = torchaudio.load(
|
|
reference_audio, backend="sox" if sys.platform == "linux" else "soundfile"
|
|
)
|
|
|
|
if waveform.shape[0] > 1:
|
|
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
|
|
|
if original_sr != sr:
|
|
resampler = torchaudio.transforms.Resample(orig_freq=original_sr, new_freq=sr)
|
|
waveform = resampler(waveform)
|
|
|
|
audio = waveform.squeeze().numpy()
|
|
return audio
|
|
|
|
|
|
def encode_reference(*, decoder_model, reference_audio, enable_reference_audio):
|
|
if enable_reference_audio and reference_audio is not None:
|
|
|
|
reference_audio_content = load_audio(
|
|
reference_audio, decoder_model.spec_transform.sample_rate
|
|
)
|
|
|
|
audios = torch.from_numpy(reference_audio_content).to(decoder_model.device)[
|
|
None, None, :
|
|
]
|
|
audio_lengths = torch.tensor(
|
|
[audios.shape[2]], device=decoder_model.device, dtype=torch.long
|
|
)
|
|
logger.info(
|
|
f"Loaded audio with {audios.shape[2] / decoder_model.spec_transform.sample_rate:.2f} seconds"
|
|
)
|
|
|
|
|
|
if isinstance(decoder_model, FireflyArchitecture):
|
|
prompt_tokens = decoder_model.encode(audios, audio_lengths)[0][0]
|
|
|
|
logger.info(f"Encoded prompt: {prompt_tokens.shape}")
|
|
else:
|
|
prompt_tokens = None
|
|
logger.info("No reference audio provided")
|
|
|
|
return prompt_tokens
|
|
|
|
|
|
def decode_vq_tokens(
|
|
*,
|
|
decoder_model,
|
|
codes,
|
|
):
|
|
feature_lengths = torch.tensor([codes.shape[1]], device=decoder_model.device)
|
|
logger.info(f"VQ features: {codes.shape}")
|
|
|
|
if isinstance(decoder_model, FireflyArchitecture):
|
|
|
|
return decoder_model.decode(
|
|
indices=codes[None],
|
|
feature_lengths=feature_lengths,
|
|
)[0].squeeze()
|
|
|
|
raise ValueError(f"Unknown model type: {type(decoder_model)}")
|
|
|
|
|
|
routes = MultimethodRoutes(base_class=HttpView)
|
|
|
|
|
|
def get_content_type(audio_format):
|
|
if audio_format == "wav":
|
|
return "audio/wav"
|
|
elif audio_format == "flac":
|
|
return "audio/flac"
|
|
elif audio_format == "mp3":
|
|
return "audio/mpeg"
|
|
else:
|
|
return "application/octet-stream"
|
|
|
|
|
|
@torch.inference_mode()
|
|
def inference(req: ServeTTSRequest):
|
|
|
|
idstr: str | None = req.reference_id
|
|
if idstr is not None:
|
|
ref_folder = Path("references") / idstr
|
|
ref_folder.mkdir(parents=True, exist_ok=True)
|
|
ref_audios = list_files(
|
|
ref_folder, AUDIO_EXTENSIONS, recursive=True, sort=False
|
|
)
|
|
prompt_tokens = [
|
|
encode_reference(
|
|
decoder_model=decoder_model,
|
|
reference_audio=audio_to_bytes(str(ref_audio)),
|
|
enable_reference_audio=True,
|
|
)
|
|
for ref_audio in ref_audios
|
|
]
|
|
prompt_texts = [
|
|
read_ref_text(str(ref_audio.with_suffix(".lab")))
|
|
for ref_audio in ref_audios
|
|
]
|
|
|
|
else:
|
|
|
|
refs = req.references
|
|
if refs is None:
|
|
refs = []
|
|
prompt_tokens = [
|
|
encode_reference(
|
|
decoder_model=decoder_model,
|
|
reference_audio=ref.audio,
|
|
enable_reference_audio=True,
|
|
)
|
|
for ref in refs
|
|
]
|
|
prompt_texts = [ref.text for ref in refs]
|
|
|
|
|
|
request = dict(
|
|
device=decoder_model.device,
|
|
max_new_tokens=req.max_new_tokens,
|
|
text=(
|
|
req.text
|
|
if not req.normalize
|
|
else ChnNormedText(raw_text=req.text).normalize()
|
|
),
|
|
top_p=req.top_p,
|
|
repetition_penalty=req.repetition_penalty,
|
|
temperature=req.temperature,
|
|
compile=args.compile,
|
|
iterative_prompt=req.chunk_length > 0,
|
|
chunk_length=req.chunk_length,
|
|
max_length=2048,
|
|
prompt_tokens=prompt_tokens,
|
|
prompt_text=prompt_texts,
|
|
)
|
|
|
|
response_queue = queue.Queue()
|
|
llama_queue.put(
|
|
GenerateRequest(
|
|
request=request,
|
|
response_queue=response_queue,
|
|
)
|
|
)
|
|
|
|
if req.streaming:
|
|
yield wav_chunk_header()
|
|
|
|
segments = []
|
|
while True:
|
|
result: WrappedGenerateResponse = response_queue.get()
|
|
if result.status == "error":
|
|
raise result.response
|
|
break
|
|
|
|
result: GenerateResponse = result.response
|
|
if result.action == "next":
|
|
break
|
|
|
|
with autocast_exclude_mps(
|
|
device_type=decoder_model.device.type, dtype=args.precision
|
|
):
|
|
fake_audios = decode_vq_tokens(
|
|
decoder_model=decoder_model,
|
|
codes=result.codes,
|
|
)
|
|
|
|
fake_audios = fake_audios.float().cpu().numpy()
|
|
|
|
if req.streaming:
|
|
yield (fake_audios * 32768).astype(np.int16).tobytes()
|
|
else:
|
|
segments.append(fake_audios)
|
|
|
|
if req.streaming:
|
|
return
|
|
|
|
if len(segments) == 0:
|
|
raise HTTPException(
|
|
HTTPStatus.INTERNAL_SERVER_ERROR,
|
|
content="No audio generated, please check the input text.",
|
|
)
|
|
|
|
fake_audios = np.concatenate(segments, axis=0)
|
|
yield fake_audios
|
|
|
|
|
|
async def inference_async(req: ServeTTSRequest):
|
|
for chunk in inference(req):
|
|
yield chunk
|
|
|
|
|
|
async def buffer_to_async_generator(buffer):
|
|
yield buffer
|
|
|
|
|
|
@routes.http.post("/v1/tts")
|
|
async def api_invoke_model(
|
|
req: Annotated[ServeTTSRequest, Body(exclusive=True)],
|
|
):
|
|
"""
|
|
Invoke model and generate audio
|
|
"""
|
|
|
|
if args.max_text_length > 0 and len(req.text) > args.max_text_length:
|
|
raise HTTPException(
|
|
HTTPStatus.BAD_REQUEST,
|
|
content=f"Text is too long, max length is {args.max_text_length}",
|
|
)
|
|
|
|
if req.streaming and req.format != "wav":
|
|
raise HTTPException(
|
|
HTTPStatus.BAD_REQUEST,
|
|
content="Streaming only supports WAV format",
|
|
)
|
|
|
|
if req.streaming:
|
|
return StreamResponse(
|
|
iterable=inference_async(req),
|
|
headers={
|
|
"Content-Disposition": f"attachment; filename=audio.{req.format}",
|
|
},
|
|
content_type=get_content_type(req.format),
|
|
)
|
|
else:
|
|
fake_audios = next(inference(req))
|
|
buffer = io.BytesIO()
|
|
sf.write(
|
|
buffer,
|
|
fake_audios,
|
|
decoder_model.spec_transform.sample_rate,
|
|
format=req.format,
|
|
)
|
|
|
|
return StreamResponse(
|
|
iterable=buffer_to_async_generator(buffer.getvalue()),
|
|
headers={
|
|
"Content-Disposition": f"attachment; filename=audio.{req.format}",
|
|
},
|
|
content_type=get_content_type(req.format),
|
|
)
|
|
|
|
|
|
@routes.http.post("/v1/health")
|
|
async def api_health():
|
|
"""
|
|
Health check
|
|
"""
|
|
|
|
return JSONResponse({"status": "ok"})
|
|
|
|
|
|
def parse_args():
|
|
parser = ArgumentParser()
|
|
parser.add_argument(
|
|
"--llama-checkpoint-path",
|
|
type=str,
|
|
default="checkpoints/fish-speech-1.4",
|
|
)
|
|
parser.add_argument(
|
|
"--decoder-checkpoint-path",
|
|
type=str,
|
|
default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth",
|
|
)
|
|
parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
|
|
parser.add_argument("--device", type=str, default="cuda")
|
|
parser.add_argument("--half", action="store_true")
|
|
parser.add_argument("--compile", action="store_true")
|
|
parser.add_argument("--max-text-length", type=int, default=0)
|
|
parser.add_argument("--listen", type=str, default="127.0.0.1:8080")
|
|
parser.add_argument("--workers", type=int, default=1)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
openapi = OpenAPI(
|
|
{
|
|
"title": "Fish Speech API",
|
|
},
|
|
).routes
|
|
|
|
|
|
class MsgPackRequest(HttpRequest):
|
|
async def data(self) -> Annotated[Any, ContentType("application/msgpack")]:
|
|
if self.content_type == "application/msgpack":
|
|
return ormsgpack.unpackb(await self.body)
|
|
|
|
raise HTTPException(
|
|
HTTPStatus.UNSUPPORTED_MEDIA_TYPE,
|
|
headers={"Accept": "application/msgpack"},
|
|
)
|
|
|
|
|
|
app = Kui(
|
|
routes=routes + openapi[1:],
|
|
exception_handlers={
|
|
HTTPException: http_execption_handler,
|
|
Exception: other_exception_handler,
|
|
},
|
|
factory_class=FactoryClass(http=MsgPackRequest),
|
|
cors_config={},
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import uvicorn
|
|
|
|
args = parse_args()
|
|
args.precision = torch.half if args.half else torch.bfloat16
|
|
|
|
logger.info("Loading Llama model...")
|
|
llama_queue = launch_thread_safe_queue(
|
|
checkpoint_path=args.llama_checkpoint_path,
|
|
device=args.device,
|
|
precision=args.precision,
|
|
compile=args.compile,
|
|
)
|
|
logger.info("Llama model loaded, loading VQ-GAN model...")
|
|
|
|
decoder_model = load_decoder_model(
|
|
config_name=args.decoder_config_name,
|
|
checkpoint_path=args.decoder_checkpoint_path,
|
|
device=args.device,
|
|
)
|
|
|
|
logger.info("VQ-GAN model loaded, warming up...")
|
|
|
|
|
|
list(
|
|
inference(
|
|
ServeTTSRequest(
|
|
text="Hello world.",
|
|
references=[],
|
|
reference_id=None,
|
|
max_new_tokens=1024,
|
|
chunk_length=200,
|
|
top_p=0.7,
|
|
repetition_penalty=1.2,
|
|
temperature=0.7,
|
|
emotion=None,
|
|
format="wav",
|
|
)
|
|
)
|
|
)
|
|
|
|
logger.info(f"Warming up done, starting server at http://{args.listen}")
|
|
host, port = args.listen.split(":")
|
|
uvicorn.run(app, host=host, port=int(port), workers=args.workers, log_level="info")
|
|
|