Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
GitHub Actions
commited on
Commit
·
27c8444
1
Parent(s):
b97094d
Sync from GitHub repo
Browse files- app.py +1673 -26
- migrate.py +58 -4
- migrate_consumed_sentences.py +52 -0
- models.py +127 -13
- requirements.txt +2 -1
- templates/arena.html +6 -11
- tts.py +0 -2
app.py
CHANGED
@@ -1,33 +1,1680 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
@app.route("/")
|
29 |
-
def
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
if __name__ == "__main__":
|
33 |
-
app.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from huggingface_hub import HfApi, hf_hub_download
|
3 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
4 |
+
from concurrent.futures import ThreadPoolExecutor
|
5 |
+
from datetime import datetime
|
6 |
+
import threading # Added for locking
|
7 |
+
from sqlalchemy import or_ # Added for vote counting query
|
8 |
+
from datasets import load_dataset
|
9 |
+
|
10 |
+
year = datetime.now().year
|
11 |
+
month = datetime.now().month
|
12 |
+
|
13 |
+
# Check if running in a Huggin Face Space
|
14 |
+
IS_SPACES = False
|
15 |
+
if os.getenv("SPACE_REPO_NAME"):
|
16 |
+
print("Running in a Hugging Face Space 🤗")
|
17 |
+
IS_SPACES = True
|
18 |
+
|
19 |
+
# Setup database sync for HF Spaces
|
20 |
+
if not os.path.exists("instance/tts_arena.db"):
|
21 |
+
os.makedirs("instance", exist_ok=True)
|
22 |
+
try:
|
23 |
+
print("Database not found, downloading from HF dataset...")
|
24 |
+
hf_hub_download(
|
25 |
+
repo_id="TTS-AGI/database-arena-v2",
|
26 |
+
filename="tts_arena.db",
|
27 |
+
repo_type="dataset",
|
28 |
+
local_dir="instance",
|
29 |
+
token=os.getenv("HF_TOKEN"),
|
30 |
+
)
|
31 |
+
print("Database downloaded successfully ✅")
|
32 |
+
except Exception as e:
|
33 |
+
print(f"Error downloading database from HF dataset: {str(e)} ⚠️")
|
34 |
+
|
35 |
+
from flask import (
|
36 |
+
Flask,
|
37 |
+
render_template,
|
38 |
+
g,
|
39 |
+
request,
|
40 |
+
jsonify,
|
41 |
+
send_file,
|
42 |
+
redirect,
|
43 |
+
url_for,
|
44 |
+
session,
|
45 |
+
abort,
|
46 |
+
)
|
47 |
+
from flask_login import LoginManager, current_user
|
48 |
+
from models import *
|
49 |
+
from models import (
|
50 |
+
hash_sentence, is_sentence_consumed, mark_sentence_consumed,
|
51 |
+
get_unconsumed_sentences, get_consumed_sentences_count, get_random_unconsumed_sentence
|
52 |
+
)
|
53 |
+
from auth import auth, init_oauth, is_admin
|
54 |
+
from admin import admin
|
55 |
+
from security import is_vote_allowed, check_user_security_score, detect_coordinated_voting
|
56 |
+
import os
|
57 |
+
from dotenv import load_dotenv
|
58 |
+
from flask_limiter import Limiter
|
59 |
+
from flask_limiter.util import get_remote_address
|
60 |
+
import uuid
|
61 |
+
import tempfile
|
62 |
+
import shutil
|
63 |
+
from tts import predict_tts
|
64 |
+
import random
|
65 |
+
import json
|
66 |
+
from datetime import datetime, timedelta
|
67 |
+
from flask_migrate import Migrate
|
68 |
+
import requests
|
69 |
+
import functools
|
70 |
+
import time # Added for potential retries
|
71 |
+
|
72 |
+
|
73 |
+
def get_client_ip():
|
74 |
+
"""Get the client's IP address, handling proxies and load balancers."""
|
75 |
+
# Check for forwarded headers first (common with reverse proxies)
|
76 |
+
if request.headers.get('X-Forwarded-For'):
|
77 |
+
# X-Forwarded-For can contain multiple IPs, take the first one
|
78 |
+
return request.headers.get('X-Forwarded-For').split(',')[0].strip()
|
79 |
+
elif request.headers.get('X-Real-IP'):
|
80 |
+
return request.headers.get('X-Real-IP')
|
81 |
+
elif request.headers.get('CF-Connecting-IP'): # Cloudflare
|
82 |
+
return request.headers.get('CF-Connecting-IP')
|
83 |
+
else:
|
84 |
+
return request.remote_addr
|
85 |
+
|
86 |
+
|
87 |
+
# Load environment variables
|
88 |
+
if not IS_SPACES:
|
89 |
+
load_dotenv() # Only load .env if not running in a Hugging Face Space
|
90 |
|
91 |
app = Flask(__name__)
|
92 |
+
app.config["SECRET_KEY"] = os.getenv("SECRET_KEY", os.urandom(24))
|
93 |
+
app.config["SQLALCHEMY_DATABASE_URI"] = os.getenv(
|
94 |
+
"DATABASE_URI", "sqlite:///tts_arena.db"
|
95 |
+
)
|
96 |
+
app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False
|
97 |
+
app.config["SESSION_COOKIE_SECURE"] = True
|
98 |
+
app.config["SESSION_COOKIE_SAMESITE"] = (
|
99 |
+
"None" if IS_SPACES else "Lax"
|
100 |
+
) # HF Spaces uses iframes to load the app, so we need to set SAMESITE to None
|
101 |
+
app.config["PERMANENT_SESSION_LIFETIME"] = timedelta(days=30) # Set to desired duration
|
102 |
+
|
103 |
+
# Force HTTPS when running in HuggingFace Spaces
|
104 |
+
if IS_SPACES:
|
105 |
+
app.config["PREFERRED_URL_SCHEME"] = "https"
|
106 |
+
|
107 |
+
# Cloudflare Turnstile settings
|
108 |
+
app.config["TURNSTILE_ENABLED"] = (
|
109 |
+
os.getenv("TURNSTILE_ENABLED", "False").lower() == "true"
|
110 |
+
)
|
111 |
+
app.config["TURNSTILE_SITE_KEY"] = os.getenv("TURNSTILE_SITE_KEY", "")
|
112 |
+
app.config["TURNSTILE_SECRET_KEY"] = os.getenv("TURNSTILE_SECRET_KEY", "")
|
113 |
+
app.config["TURNSTILE_VERIFY_URL"] = (
|
114 |
+
"https://challenges.cloudflare.com/turnstile/v0/siteverify"
|
115 |
+
)
|
116 |
+
|
117 |
+
migrate = Migrate(app, db)
|
118 |
+
|
119 |
+
# Initialize extensions
|
120 |
+
db.init_app(app)
|
121 |
+
login_manager = LoginManager()
|
122 |
+
login_manager.init_app(app)
|
123 |
+
login_manager.login_view = "auth.login"
|
124 |
+
|
125 |
+
# Initialize OAuth
|
126 |
+
init_oauth(app)
|
127 |
+
|
128 |
+
# Configure rate limits
|
129 |
+
limiter = Limiter(
|
130 |
+
app=app,
|
131 |
+
key_func=get_remote_address,
|
132 |
+
default_limits=["2000 per day", "50 per minute"],
|
133 |
+
storage_uri="memory://",
|
134 |
+
)
|
135 |
+
|
136 |
+
# TTS Cache Configuration - Read from environment
|
137 |
+
TTS_CACHE_SIZE = int(os.getenv("TTS_CACHE_SIZE", "10"))
|
138 |
+
CACHE_AUDIO_SUBDIR = "cache"
|
139 |
+
tts_cache = {} # sentence -> {model_a, model_b, audio_a, audio_b, created_at}
|
140 |
+
tts_cache_lock = threading.Lock()
|
141 |
+
SMOOTHING_FACTOR_MODEL_SELECTION = 500 # For weighted random model selection
|
142 |
+
# Increased max_workers to 8 for concurrent generation/refill
|
143 |
+
cache_executor = ThreadPoolExecutor(max_workers=8, thread_name_prefix='CacheReplacer')
|
144 |
+
all_harvard_sentences = [] # Keep the full list available
|
145 |
+
|
146 |
+
# Create temp directories
|
147 |
+
TEMP_AUDIO_DIR = os.path.join(tempfile.gettempdir(), "tts_arena_audio")
|
148 |
+
CACHE_AUDIO_DIR = os.path.join(TEMP_AUDIO_DIR, CACHE_AUDIO_SUBDIR)
|
149 |
+
os.makedirs(TEMP_AUDIO_DIR, exist_ok=True)
|
150 |
+
os.makedirs(CACHE_AUDIO_DIR, exist_ok=True) # Ensure cache subdir exists
|
151 |
+
|
152 |
+
|
153 |
+
# Store active TTS sessions
|
154 |
+
app.tts_sessions = {}
|
155 |
+
tts_sessions = app.tts_sessions
|
156 |
+
|
157 |
+
# Store active conversational sessions
|
158 |
+
app.conversational_sessions = {}
|
159 |
+
conversational_sessions = app.conversational_sessions
|
160 |
+
|
161 |
+
# Register blueprints
|
162 |
+
app.register_blueprint(auth, url_prefix="/auth")
|
163 |
+
app.register_blueprint(admin)
|
164 |
+
|
165 |
+
|
166 |
+
@login_manager.user_loader
|
167 |
+
def load_user(user_id):
|
168 |
+
return User.query.get(int(user_id))
|
169 |
+
|
170 |
+
|
171 |
+
@app.before_request
|
172 |
+
def before_request():
|
173 |
+
g.user = current_user
|
174 |
+
g.is_admin = is_admin(current_user)
|
175 |
+
|
176 |
+
# Ensure HTTPS for HuggingFace Spaces environment
|
177 |
+
if IS_SPACES and request.headers.get("X-Forwarded-Proto") == "http":
|
178 |
+
url = request.url.replace("http://", "https://", 1)
|
179 |
+
return redirect(url, code=301)
|
180 |
+
|
181 |
+
# Check if Turnstile verification is required
|
182 |
+
if app.config["TURNSTILE_ENABLED"]:
|
183 |
+
# Exclude verification routes
|
184 |
+
excluded_routes = ["verify_turnstile", "turnstile_page", "static"]
|
185 |
+
if request.endpoint not in excluded_routes:
|
186 |
+
# Check if user is verified
|
187 |
+
if not session.get("turnstile_verified"):
|
188 |
+
# Save original URL for redirect after verification
|
189 |
+
redirect_url = request.url
|
190 |
+
# Force HTTPS in HuggingFace Spaces
|
191 |
+
if IS_SPACES and redirect_url.startswith("http://"):
|
192 |
+
redirect_url = redirect_url.replace("http://", "https://", 1)
|
193 |
+
|
194 |
+
# If it's an API request, return a JSON response
|
195 |
+
if request.path.startswith("/api/"):
|
196 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
197 |
+
# For regular requests, redirect to verification page
|
198 |
+
return redirect(url_for("turnstile_page", redirect_url=redirect_url))
|
199 |
+
else:
|
200 |
+
# Check if verification has expired (default: 24 hours)
|
201 |
+
verification_timeout = (
|
202 |
+
int(os.getenv("TURNSTILE_TIMEOUT_HOURS", "24")) * 3600
|
203 |
+
) # Convert hours to seconds
|
204 |
+
verified_at = session.get("turnstile_verified_at", 0)
|
205 |
+
current_time = datetime.utcnow().timestamp()
|
206 |
+
|
207 |
+
if current_time - verified_at > verification_timeout:
|
208 |
+
# Verification expired, clear status and redirect to verification page
|
209 |
+
session.pop("turnstile_verified", None)
|
210 |
+
session.pop("turnstile_verified_at", None)
|
211 |
+
|
212 |
+
redirect_url = request.url
|
213 |
+
# Force HTTPS in HuggingFace Spaces
|
214 |
+
if IS_SPACES and redirect_url.startswith("http://"):
|
215 |
+
redirect_url = redirect_url.replace("http://", "https://", 1)
|
216 |
+
|
217 |
+
if request.path.startswith("/api/"):
|
218 |
+
return jsonify({"error": "Turnstile verification expired"}), 403
|
219 |
+
return redirect(
|
220 |
+
url_for("turnstile_page", redirect_url=redirect_url)
|
221 |
+
)
|
222 |
+
|
223 |
+
|
224 |
+
@app.route("/turnstile", methods=["GET"])
|
225 |
+
def turnstile_page():
|
226 |
+
"""Display Cloudflare Turnstile verification page"""
|
227 |
+
redirect_url = request.args.get("redirect_url", url_for("arena", _external=True))
|
228 |
+
|
229 |
+
# Force HTTPS in HuggingFace Spaces
|
230 |
+
if IS_SPACES and redirect_url.startswith("http://"):
|
231 |
+
redirect_url = redirect_url.replace("http://", "https://", 1)
|
232 |
+
|
233 |
+
return render_template(
|
234 |
+
"turnstile.html",
|
235 |
+
turnstile_site_key=app.config["TURNSTILE_SITE_KEY"],
|
236 |
+
redirect_url=redirect_url,
|
237 |
+
)
|
238 |
|
239 |
+
|
240 |
+
@app.route("/verify-turnstile", methods=["POST"])
|
241 |
+
def verify_turnstile():
|
242 |
+
"""Verify Cloudflare Turnstile token"""
|
243 |
+
token = request.form.get("cf-turnstile-response")
|
244 |
+
redirect_url = request.form.get("redirect_url", url_for("arena", _external=True))
|
245 |
+
|
246 |
+
# Force HTTPS in HuggingFace Spaces
|
247 |
+
if IS_SPACES and redirect_url.startswith("http://"):
|
248 |
+
redirect_url = redirect_url.replace("http://", "https://", 1)
|
249 |
+
|
250 |
+
if not token:
|
251 |
+
# If AJAX request, return JSON error
|
252 |
+
if request.headers.get("X-Requested-With") == "XMLHttpRequest":
|
253 |
+
return (
|
254 |
+
jsonify({"success": False, "error": "Missing verification token"}),
|
255 |
+
400,
|
256 |
+
)
|
257 |
+
# Otherwise redirect back to turnstile page
|
258 |
+
return redirect(url_for("turnstile_page", redirect_url=redirect_url))
|
259 |
+
|
260 |
+
# Verify token with Cloudflare
|
261 |
+
data = {
|
262 |
+
"secret": app.config["TURNSTILE_SECRET_KEY"],
|
263 |
+
"response": token,
|
264 |
+
"remoteip": request.remote_addr,
|
265 |
+
}
|
266 |
+
|
267 |
+
try:
|
268 |
+
response = requests.post(app.config["TURNSTILE_VERIFY_URL"], data=data)
|
269 |
+
result = response.json()
|
270 |
+
|
271 |
+
if result.get("success"):
|
272 |
+
# Set verification status in session
|
273 |
+
session["turnstile_verified"] = True
|
274 |
+
session["turnstile_verified_at"] = datetime.utcnow().timestamp()
|
275 |
+
|
276 |
+
# Determine response type based on request
|
277 |
+
is_xhr = request.headers.get("X-Requested-With") == "XMLHttpRequest"
|
278 |
+
accepts_json = "application/json" in request.headers.get("Accept", "")
|
279 |
+
|
280 |
+
# If AJAX or JSON request, return success JSON
|
281 |
+
if is_xhr or accepts_json:
|
282 |
+
return jsonify({"success": True, "redirect": redirect_url})
|
283 |
+
|
284 |
+
# For regular form submissions, redirect to the target URL
|
285 |
+
return redirect(redirect_url)
|
286 |
+
else:
|
287 |
+
# Verification failed
|
288 |
+
app.logger.warning(f"Turnstile verification failed: {result}")
|
289 |
+
|
290 |
+
# If AJAX request, return JSON error
|
291 |
+
if request.headers.get("X-Requested-With") == "XMLHttpRequest":
|
292 |
+
return jsonify({"success": False, "error": "Verification failed"}), 403
|
293 |
+
|
294 |
+
# Otherwise redirect back to turnstile page
|
295 |
+
return redirect(url_for("turnstile_page", redirect_url=redirect_url))
|
296 |
+
|
297 |
+
except Exception as e:
|
298 |
+
app.logger.error(f"Turnstile verification error: {str(e)}")
|
299 |
+
|
300 |
+
# If AJAX request, return JSON error
|
301 |
+
if request.headers.get("X-Requested-With") == "XMLHttpRequest":
|
302 |
+
return (
|
303 |
+
jsonify(
|
304 |
+
{"success": False, "error": "Server error during verification"}
|
305 |
+
),
|
306 |
+
500,
|
307 |
+
)
|
308 |
+
|
309 |
+
# Otherwise redirect back to turnstile page
|
310 |
+
return redirect(url_for("turnstile_page", redirect_url=redirect_url))
|
311 |
+
|
312 |
+
# Load sentences from the TTS-AGI/arena-prompts dataset
|
313 |
+
print("Loading TTS-AGI/arena-prompts dataset...")
|
314 |
+
dataset = load_dataset("TTS-AGI/arena-prompts", split="train")
|
315 |
+
# Extract the text column and clean up
|
316 |
+
all_harvard_sentences = [item['text'].strip() for item in dataset if item['text'] and item['text'].strip()]
|
317 |
+
print(f"Loaded {len(all_harvard_sentences)} sentences from dataset")
|
318 |
+
|
319 |
+
# Initialize initial_sentences as empty - will be populated with unconsumed sentences only
|
320 |
+
initial_sentences = []
|
321 |
|
322 |
@app.route("/")
|
323 |
+
def arena():
|
324 |
+
# Pass a subset of sentences for the random button fallback
|
325 |
+
return render_template("arena.html", harvard_sentences=json.dumps(initial_sentences))
|
326 |
+
|
327 |
+
|
328 |
+
@app.route("/leaderboard")
|
329 |
+
def leaderboard():
|
330 |
+
tts_leaderboard = get_leaderboard_data(ModelType.TTS)
|
331 |
+
conversational_leaderboard = get_leaderboard_data(ModelType.CONVERSATIONAL)
|
332 |
+
top_voters = get_top_voters(10) # Get top 10 voters
|
333 |
+
|
334 |
+
# Initialize personal leaderboard data
|
335 |
+
tts_personal_leaderboard = None
|
336 |
+
conversational_personal_leaderboard = None
|
337 |
+
user_leaderboard_visibility = None
|
338 |
+
|
339 |
+
# If user is logged in, get their personal leaderboard and visibility setting
|
340 |
+
if current_user.is_authenticated:
|
341 |
+
tts_personal_leaderboard = get_user_leaderboard(current_user.id, ModelType.TTS)
|
342 |
+
conversational_personal_leaderboard = get_user_leaderboard(
|
343 |
+
current_user.id, ModelType.CONVERSATIONAL
|
344 |
+
)
|
345 |
+
user_leaderboard_visibility = current_user.show_in_leaderboard
|
346 |
+
|
347 |
+
# Get key dates for the timeline
|
348 |
+
tts_key_dates = get_key_historical_dates(ModelType.TTS)
|
349 |
+
conversational_key_dates = get_key_historical_dates(ModelType.CONVERSATIONAL)
|
350 |
+
|
351 |
+
# Format dates for display in the dropdown
|
352 |
+
formatted_tts_dates = [date.strftime("%B %Y") for date in tts_key_dates]
|
353 |
+
formatted_conversational_dates = [
|
354 |
+
date.strftime("%B %Y") for date in conversational_key_dates
|
355 |
+
]
|
356 |
+
|
357 |
+
return render_template(
|
358 |
+
"leaderboard.html",
|
359 |
+
tts_leaderboard=tts_leaderboard,
|
360 |
+
conversational_leaderboard=conversational_leaderboard,
|
361 |
+
tts_personal_leaderboard=tts_personal_leaderboard,
|
362 |
+
conversational_personal_leaderboard=conversational_personal_leaderboard,
|
363 |
+
tts_key_dates=tts_key_dates,
|
364 |
+
conversational_key_dates=conversational_key_dates,
|
365 |
+
formatted_tts_dates=formatted_tts_dates,
|
366 |
+
formatted_conversational_dates=formatted_conversational_dates,
|
367 |
+
top_voters=top_voters,
|
368 |
+
user_leaderboard_visibility=user_leaderboard_visibility
|
369 |
+
)
|
370 |
+
|
371 |
+
|
372 |
+
@app.route("/api/historical-leaderboard/<model_type>")
|
373 |
+
def historical_leaderboard(model_type):
|
374 |
+
"""Get historical leaderboard data for a specific date"""
|
375 |
+
if model_type not in [ModelType.TTS, ModelType.CONVERSATIONAL]:
|
376 |
+
return jsonify({"error": "Invalid model type"}), 400
|
377 |
+
|
378 |
+
# Get date from query parameter
|
379 |
+
date_str = request.args.get("date")
|
380 |
+
if not date_str:
|
381 |
+
return jsonify({"error": "Date parameter is required"}), 400
|
382 |
+
|
383 |
+
try:
|
384 |
+
# Parse date from URL parameter (format: YYYY-MM-DD)
|
385 |
+
target_date = datetime.strptime(date_str, "%Y-%m-%d")
|
386 |
+
|
387 |
+
# Get historical leaderboard data
|
388 |
+
leaderboard_data = get_historical_leaderboard_data(model_type, target_date)
|
389 |
+
|
390 |
+
return jsonify(
|
391 |
+
{"date": target_date.strftime("%B %d, %Y"), "leaderboard": leaderboard_data}
|
392 |
+
)
|
393 |
+
except ValueError:
|
394 |
+
return jsonify({"error": "Invalid date format. Use YYYY-MM-DD"}), 400
|
395 |
+
|
396 |
+
|
397 |
+
@app.route("/about")
|
398 |
+
def about():
|
399 |
+
return render_template("about.html")
|
400 |
+
|
401 |
+
|
402 |
+
# --- TTS Caching Functions ---
|
403 |
+
|
404 |
+
def generate_and_save_tts(text, model_id, output_dir):
|
405 |
+
"""Generates TTS and saves it to a specific directory, returning the full path."""
|
406 |
+
temp_audio_path = None # Initialize to None
|
407 |
+
try:
|
408 |
+
app.logger.debug(f"[TTS Gen {model_id}] Starting generation for: '{text[:30]}...'")
|
409 |
+
# If predict_tts saves file itself and returns path:
|
410 |
+
temp_audio_path = predict_tts(text, model_id)
|
411 |
+
app.logger.debug(f"[TTS Gen {model_id}] predict_tts returned: {temp_audio_path}")
|
412 |
+
|
413 |
+
if not temp_audio_path or not os.path.exists(temp_audio_path):
|
414 |
+
app.logger.warning(f"[TTS Gen {model_id}] predict_tts failed or returned invalid path: {temp_audio_path}")
|
415 |
+
raise ValueError("predict_tts did not return a valid path or file does not exist")
|
416 |
+
|
417 |
+
file_uuid = str(uuid.uuid4())
|
418 |
+
dest_path = os.path.join(output_dir, f"{file_uuid}.wav")
|
419 |
+
app.logger.debug(f"[TTS Gen {model_id}] Moving {temp_audio_path} to {dest_path}")
|
420 |
+
# Move the file generated by predict_tts to the target cache directory
|
421 |
+
shutil.move(temp_audio_path, dest_path)
|
422 |
+
app.logger.debug(f"[TTS Gen {model_id}] Move successful. Returning {dest_path}")
|
423 |
+
return dest_path
|
424 |
+
|
425 |
+
except Exception as e:
|
426 |
+
app.logger.error(f"Error generating/saving TTS for model {model_id} and text '{text[:30]}...': {str(e)}")
|
427 |
+
# Ensure temporary file from predict_tts (if any) is cleaned up
|
428 |
+
if temp_audio_path and os.path.exists(temp_audio_path):
|
429 |
+
try:
|
430 |
+
app.logger.debug(f"[TTS Gen {model_id}] Cleaning up temporary file {temp_audio_path} after error.")
|
431 |
+
os.remove(temp_audio_path)
|
432 |
+
except OSError:
|
433 |
+
pass # Ignore error if file couldn't be removed
|
434 |
+
return None
|
435 |
+
|
436 |
+
|
437 |
+
def _generate_cache_entry_task(sentence):
|
438 |
+
"""Task function to generate audio for a sentence and add to cache."""
|
439 |
+
# Wrap the entire task in an application context
|
440 |
+
with app.app_context():
|
441 |
+
if not sentence:
|
442 |
+
# Select a new sentence if not provided (for replacement)
|
443 |
+
with tts_cache_lock:
|
444 |
+
cached_keys = set(tts_cache.keys())
|
445 |
+
# Get unconsumed sentences that are also not already cached
|
446 |
+
unconsumed_sentences = get_unconsumed_sentences(all_harvard_sentences)
|
447 |
+
available_sentences = [s for s in unconsumed_sentences if s not in cached_keys]
|
448 |
+
if not available_sentences:
|
449 |
+
app.logger.warning("No more unconsumed sentences available for caching. All sentences have been consumed.")
|
450 |
+
return
|
451 |
+
sentence = random.choice(available_sentences)
|
452 |
+
|
453 |
+
# app.logger.info removed duplicate log
|
454 |
+
print(f"[Cache Task] Querying models for: '{sentence[:50]}...'")
|
455 |
+
available_models = Model.query.filter_by(
|
456 |
+
model_type=ModelType.TTS, is_active=True
|
457 |
+
).all()
|
458 |
+
|
459 |
+
if len(available_models) < 2:
|
460 |
+
app.logger.error("Not enough active TTS models to generate cache entry.")
|
461 |
+
return
|
462 |
+
|
463 |
+
try:
|
464 |
+
models = get_weighted_random_models(available_models, 2, ModelType.TTS)
|
465 |
+
model_a_id = models[0].id
|
466 |
+
model_b_id = models[1].id
|
467 |
+
|
468 |
+
# Generate audio concurrently using a local executor for clarity within the task
|
469 |
+
with ThreadPoolExecutor(max_workers=2, thread_name_prefix='AudioGen') as audio_executor:
|
470 |
+
future_a = audio_executor.submit(generate_and_save_tts, sentence, model_a_id, CACHE_AUDIO_DIR)
|
471 |
+
future_b = audio_executor.submit(generate_and_save_tts, sentence, model_b_id, CACHE_AUDIO_DIR)
|
472 |
+
|
473 |
+
timeout_seconds = 120
|
474 |
+
audio_a_path = future_a.result(timeout=timeout_seconds)
|
475 |
+
audio_b_path = future_b.result(timeout=timeout_seconds)
|
476 |
+
|
477 |
+
if audio_a_path and audio_b_path:
|
478 |
+
with tts_cache_lock:
|
479 |
+
# Only add if the sentence isn't already back in the cache
|
480 |
+
# And ensure cache size doesn't exceed limit
|
481 |
+
if sentence not in tts_cache and len(tts_cache) < TTS_CACHE_SIZE:
|
482 |
+
tts_cache[sentence] = {
|
483 |
+
"model_a": model_a_id,
|
484 |
+
"model_b": model_b_id,
|
485 |
+
"audio_a": audio_a_path,
|
486 |
+
"audio_b": audio_b_path,
|
487 |
+
"created_at": datetime.utcnow(),
|
488 |
+
}
|
489 |
+
# Mark sentence as consumed for cache usage
|
490 |
+
mark_sentence_consumed(sentence, usage_type='cache')
|
491 |
+
app.logger.info(f"Successfully cached entry for: '{sentence[:50]}...'")
|
492 |
+
elif sentence in tts_cache:
|
493 |
+
app.logger.warning(f"Sentence '{sentence[:50]}...' already re-cached. Discarding new generation.")
|
494 |
+
# Clean up the newly generated files if not added
|
495 |
+
if os.path.exists(audio_a_path): os.remove(audio_a_path)
|
496 |
+
if os.path.exists(audio_b_path): os.remove(audio_b_path)
|
497 |
+
else: # Cache is full
|
498 |
+
app.logger.warning(f"Cache is full ({len(tts_cache)} entries). Discarding new generation for '{sentence[:50]}...'.")
|
499 |
+
# Clean up the newly generated files if not added
|
500 |
+
if os.path.exists(audio_a_path): os.remove(audio_a_path)
|
501 |
+
if os.path.exists(audio_b_path): os.remove(audio_b_path)
|
502 |
+
|
503 |
+
else:
|
504 |
+
app.logger.error(f"Failed to generate one or both audio files for cache: '{sentence[:50]}...'")
|
505 |
+
# Clean up whichever file might have been created
|
506 |
+
if audio_a_path and os.path.exists(audio_a_path): os.remove(audio_a_path)
|
507 |
+
if audio_b_path and os.path.exists(audio_b_path): os.remove(audio_b_path)
|
508 |
+
|
509 |
+
except Exception as e:
|
510 |
+
# Log the exception within the app context
|
511 |
+
app.logger.error(f"Exception in _generate_cache_entry_task for '{sentence[:50]}...': {str(e)}", exc_info=True)
|
512 |
+
|
513 |
+
|
514 |
+
def update_initial_sentences():
|
515 |
+
"""Update initial sentences to only include unconsumed ones."""
|
516 |
+
global initial_sentences
|
517 |
+
try:
|
518 |
+
unconsumed_for_initial = get_unconsumed_sentences(all_harvard_sentences)
|
519 |
+
if unconsumed_for_initial:
|
520 |
+
initial_sentences = random.sample(unconsumed_for_initial, min(len(unconsumed_for_initial), 500))
|
521 |
+
print(f"Updated initial sentences with {len(initial_sentences)} unconsumed sentences")
|
522 |
+
else:
|
523 |
+
print("Warning: No unconsumed sentences available for initial selection, disabling fallback")
|
524 |
+
initial_sentences = [] # No fallback to consumed sentences
|
525 |
+
except Exception as e:
|
526 |
+
print(f"Error updating initial sentences: {e}, disabling fallback for security")
|
527 |
+
initial_sentences = [] # No fallback to consumed sentences
|
528 |
+
|
529 |
+
|
530 |
+
def initialize_tts_cache():
|
531 |
+
print("Initializing TTS cache")
|
532 |
+
"""Selects initial sentences and starts generation tasks."""
|
533 |
+
with app.app_context(): # Ensure access to models
|
534 |
+
if not all_harvard_sentences:
|
535 |
+
app.logger.error("Harvard sentences not loaded. Cannot initialize cache.")
|
536 |
+
return
|
537 |
+
|
538 |
+
# Update initial sentences with unconsumed ones
|
539 |
+
update_initial_sentences()
|
540 |
+
|
541 |
+
# Only use unconsumed sentences for initial cache population
|
542 |
+
unconsumed_sentences = get_unconsumed_sentences(all_harvard_sentences)
|
543 |
+
if not unconsumed_sentences:
|
544 |
+
app.logger.error("No unconsumed sentences available for cache initialization. Cache will remain empty.")
|
545 |
+
app.logger.warning("WARNING: All sentences from the dataset have been consumed. No new TTS generations will be possible.")
|
546 |
+
return
|
547 |
+
initial_selection = random.sample(unconsumed_sentences, min(len(unconsumed_sentences), TTS_CACHE_SIZE))
|
548 |
+
app.logger.info(f"Initializing TTS cache with {len(initial_selection)} sentences...")
|
549 |
+
|
550 |
+
for sentence in initial_selection:
|
551 |
+
# Use the main cache_executor for initial population too
|
552 |
+
cache_executor.submit(_generate_cache_entry_task, sentence)
|
553 |
+
app.logger.info("Submitted initial cache generation tasks.")
|
554 |
+
|
555 |
+
# --- End TTS Caching Functions ---
|
556 |
+
|
557 |
+
|
558 |
+
@app.route("/api/tts/generate", methods=["POST"])
|
559 |
+
@limiter.limit("10 per minute") # Keep limit, cached responses are still requests
|
560 |
+
def generate_tts():
|
561 |
+
# If verification not setup, handle it first
|
562 |
+
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
|
563 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
564 |
+
|
565 |
+
# Require user to be logged in to generate audio
|
566 |
+
if not current_user.is_authenticated:
|
567 |
+
return jsonify({"error": "You must be logged in to generate audio"}), 401
|
568 |
+
|
569 |
+
data = request.json
|
570 |
+
text = data.get("text", "").strip() # Ensure text is stripped
|
571 |
+
|
572 |
+
if not text or len(text) > 1000:
|
573 |
+
return jsonify({"error": "Invalid or too long text"}), 400
|
574 |
+
|
575 |
+
# Check if sentence has already been consumed
|
576 |
+
if is_sentence_consumed(text):
|
577 |
+
remaining_count = len(get_unconsumed_sentences(all_harvard_sentences))
|
578 |
+
if remaining_count == 0:
|
579 |
+
return jsonify({"error": "This sentence has already been used and no unconsumed sentences remain. All sentences from the dataset have been consumed."}), 400
|
580 |
+
else:
|
581 |
+
return jsonify({"error": f"This sentence has already been used. Please select a different sentence. {remaining_count} sentences remain available."}), 400
|
582 |
+
|
583 |
+
# --- Cache Check ---
|
584 |
+
cache_hit = False
|
585 |
+
session_data_from_cache = None
|
586 |
+
with tts_cache_lock:
|
587 |
+
if text in tts_cache:
|
588 |
+
cache_hit = True
|
589 |
+
cached_entry = tts_cache.pop(text) # Remove from cache immediately
|
590 |
+
app.logger.info(f"TTS Cache HIT for: '{text[:50]}...'")
|
591 |
+
|
592 |
+
# Prepare session data using cached info
|
593 |
+
session_id = str(uuid.uuid4())
|
594 |
+
session_data_from_cache = {
|
595 |
+
"model_a": cached_entry["model_a"],
|
596 |
+
"model_b": cached_entry["model_b"],
|
597 |
+
"audio_a": cached_entry["audio_a"], # Paths are now from cache_dir
|
598 |
+
"audio_b": cached_entry["audio_b"],
|
599 |
+
"text": text,
|
600 |
+
"created_at": datetime.utcnow(),
|
601 |
+
"expires_at": datetime.utcnow() + timedelta(minutes=30),
|
602 |
+
"voted": False,
|
603 |
+
"cache_hit": True,
|
604 |
+
}
|
605 |
+
app.tts_sessions[session_id] = session_data_from_cache
|
606 |
+
|
607 |
+
# Note: Sentence was already marked as consumed when it was cached
|
608 |
+
# No need to mark it again here
|
609 |
+
|
610 |
+
# --- Trigger background tasks to refill the cache ---
|
611 |
+
# Calculate how many slots need refilling
|
612 |
+
current_cache_size = len(tts_cache) # Size *before* adding potentially new items
|
613 |
+
needed_refills = TTS_CACHE_SIZE - current_cache_size
|
614 |
+
# Limit concurrent refills to 8 or the actual need
|
615 |
+
refills_to_submit = min(needed_refills, 8)
|
616 |
+
|
617 |
+
if refills_to_submit > 0:
|
618 |
+
app.logger.info(f"Cache hit: Submitting {refills_to_submit} background task(s) to refill cache (current size: {current_cache_size}, target: {TTS_CACHE_SIZE}).")
|
619 |
+
for _ in range(refills_to_submit):
|
620 |
+
# Pass None to signal replacement selection within the task
|
621 |
+
cache_executor.submit(_generate_cache_entry_task, None)
|
622 |
+
else:
|
623 |
+
app.logger.info(f"Cache hit: Cache is already full or at target size ({current_cache_size}/{TTS_CACHE_SIZE}). No refill tasks submitted.")
|
624 |
+
# --- End Refill Trigger ---
|
625 |
+
|
626 |
+
if cache_hit and session_data_from_cache:
|
627 |
+
# Return response using cached data
|
628 |
+
# Note: The files are now managed by the session lifecycle (cleanup_session)
|
629 |
+
return jsonify(
|
630 |
+
{
|
631 |
+
"session_id": session_id,
|
632 |
+
"audio_a": f"/api/tts/audio/{session_id}/a",
|
633 |
+
"audio_b": f"/api/tts/audio/{session_id}/b",
|
634 |
+
"expires_in": 1800, # 30 minutes in seconds
|
635 |
+
"cache_hit": True,
|
636 |
+
}
|
637 |
+
)
|
638 |
+
# --- End Cache Check ---
|
639 |
+
|
640 |
+
# --- Cache Miss: Generate on the fly ---
|
641 |
+
app.logger.info(f"TTS Cache MISS for: '{text[:50]}...'. Generating on the fly.")
|
642 |
+
available_models = Model.query.filter_by(
|
643 |
+
model_type=ModelType.TTS, is_active=True
|
644 |
+
).all()
|
645 |
+
if len(available_models) < 2:
|
646 |
+
return jsonify({"error": "Not enough TTS models available"}), 500
|
647 |
+
|
648 |
+
selected_models = get_weighted_random_models(available_models, 2, ModelType.TTS)
|
649 |
+
|
650 |
+
try:
|
651 |
+
audio_files = []
|
652 |
+
model_ids = []
|
653 |
+
|
654 |
+
# Function to process a single model (generate directly to TEMP_AUDIO_DIR, not cache subdir)
|
655 |
+
def process_model_on_the_fly(model):
|
656 |
+
# Generate and save directly to the main temp dir
|
657 |
+
# Assume predict_tts handles saving temporary files
|
658 |
+
temp_audio_path = predict_tts(text, model.id)
|
659 |
+
if not temp_audio_path or not os.path.exists(temp_audio_path):
|
660 |
+
raise ValueError(f"predict_tts failed for model {model.id}")
|
661 |
+
|
662 |
+
# Create a unique name in the main TEMP_AUDIO_DIR for the session
|
663 |
+
file_uuid = str(uuid.uuid4())
|
664 |
+
dest_path = os.path.join(TEMP_AUDIO_DIR, f"{file_uuid}.wav")
|
665 |
+
shutil.move(temp_audio_path, dest_path) # Move from predict_tts's temp location
|
666 |
+
|
667 |
+
return {"model_id": model.id, "audio_path": dest_path}
|
668 |
+
|
669 |
+
|
670 |
+
# Use ThreadPoolExecutor to process models concurrently
|
671 |
+
with ThreadPoolExecutor(max_workers=2) as executor:
|
672 |
+
results = list(executor.map(process_model_on_the_fly, selected_models))
|
673 |
+
|
674 |
+
# Extract results
|
675 |
+
for result in results:
|
676 |
+
model_ids.append(result["model_id"])
|
677 |
+
audio_files.append(result["audio_path"])
|
678 |
+
|
679 |
+
# Create session
|
680 |
+
session_id = str(uuid.uuid4())
|
681 |
+
app.tts_sessions[session_id] = {
|
682 |
+
"model_a": model_ids[0],
|
683 |
+
"model_b": model_ids[1],
|
684 |
+
"audio_a": audio_files[0], # Paths are now from TEMP_AUDIO_DIR directly
|
685 |
+
"audio_b": audio_files[1],
|
686 |
+
"text": text,
|
687 |
+
"created_at": datetime.utcnow(),
|
688 |
+
"expires_at": datetime.utcnow() + timedelta(minutes=30),
|
689 |
+
"voted": False,
|
690 |
+
"cache_hit": False,
|
691 |
+
}
|
692 |
+
|
693 |
+
# Mark sentence as consumed for direct usage
|
694 |
+
mark_sentence_consumed(text, session_id=session_id, usage_type='direct')
|
695 |
+
|
696 |
+
# Return audio file paths and session
|
697 |
+
return jsonify(
|
698 |
+
{
|
699 |
+
"session_id": session_id,
|
700 |
+
"audio_a": f"/api/tts/audio/{session_id}/a",
|
701 |
+
"audio_b": f"/api/tts/audio/{session_id}/b",
|
702 |
+
"expires_in": 1800,
|
703 |
+
"cache_hit": False,
|
704 |
+
}
|
705 |
+
)
|
706 |
+
|
707 |
+
except Exception as e:
|
708 |
+
app.logger.error(f"TTS on-the-fly generation error: {str(e)}", exc_info=True)
|
709 |
+
# Cleanup any files potentially created during the failed attempt
|
710 |
+
if 'results' in locals():
|
711 |
+
for res in results:
|
712 |
+
if 'audio_path' in res and os.path.exists(res['audio_path']):
|
713 |
+
try:
|
714 |
+
os.remove(res['audio_path'])
|
715 |
+
except OSError:
|
716 |
+
pass
|
717 |
+
return jsonify({"error": "Failed to generate TTS"}), 500
|
718 |
+
# --- End Cache Miss ---
|
719 |
+
|
720 |
+
|
721 |
+
@app.route("/api/tts/audio/<session_id>/<model_key>")
|
722 |
+
def get_audio(session_id, model_key):
|
723 |
+
# If verification not setup, handle it first
|
724 |
+
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
|
725 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
726 |
+
|
727 |
+
if session_id not in app.tts_sessions:
|
728 |
+
return jsonify({"error": "Invalid or expired session"}), 404
|
729 |
+
|
730 |
+
session_data = app.tts_sessions[session_id]
|
731 |
+
|
732 |
+
# Check if session expired
|
733 |
+
if datetime.utcnow() > session_data["expires_at"]:
|
734 |
+
cleanup_session(session_id)
|
735 |
+
return jsonify({"error": "Session expired"}), 410
|
736 |
+
|
737 |
+
if model_key == "a":
|
738 |
+
audio_path = session_data["audio_a"]
|
739 |
+
elif model_key == "b":
|
740 |
+
audio_path = session_data["audio_b"]
|
741 |
+
else:
|
742 |
+
return jsonify({"error": "Invalid model key"}), 400
|
743 |
+
|
744 |
+
# Check if file exists
|
745 |
+
if not os.path.exists(audio_path):
|
746 |
+
return jsonify({"error": "Audio file not found"}), 404
|
747 |
+
|
748 |
+
return send_file(audio_path, mimetype="audio/wav")
|
749 |
+
|
750 |
+
|
751 |
+
@app.route("/api/tts/vote", methods=["POST"])
|
752 |
+
@limiter.limit("30 per minute")
|
753 |
+
def submit_vote():
|
754 |
+
# If verification not setup, handle it first
|
755 |
+
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
|
756 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
757 |
+
|
758 |
+
# Require user to be logged in to vote
|
759 |
+
if not current_user.is_authenticated:
|
760 |
+
return jsonify({"error": "You must be logged in to vote"}), 401
|
761 |
+
|
762 |
+
# Security checks for vote manipulation prevention
|
763 |
+
client_ip = get_client_ip()
|
764 |
+
vote_allowed, security_reason, security_score = is_vote_allowed(current_user.id, client_ip)
|
765 |
+
|
766 |
+
if not vote_allowed:
|
767 |
+
app.logger.warning(f"Vote blocked for user {current_user.username} (ID: {current_user.id}): {security_reason} (Score: {security_score})")
|
768 |
+
return jsonify({"error": f"Vote not allowed: {security_reason}"}), 403
|
769 |
+
|
770 |
+
data = request.json
|
771 |
+
session_id = data.get("session_id")
|
772 |
+
chosen_model_key = data.get("chosen_model") # "a" or "b"
|
773 |
+
|
774 |
+
if not session_id or session_id not in app.tts_sessions:
|
775 |
+
return jsonify({"error": "Invalid or expired session"}), 404
|
776 |
+
|
777 |
+
if not chosen_model_key or chosen_model_key not in ["a", "b"]:
|
778 |
+
return jsonify({"error": "Invalid chosen model"}), 400
|
779 |
+
|
780 |
+
session_data = app.tts_sessions[session_id]
|
781 |
+
|
782 |
+
# Check if session expired
|
783 |
+
if datetime.utcnow() > session_data["expires_at"]:
|
784 |
+
cleanup_session(session_id)
|
785 |
+
return jsonify({"error": "Session expired"}), 410
|
786 |
+
|
787 |
+
# Check if already voted
|
788 |
+
if session_data["voted"]:
|
789 |
+
return jsonify({"error": "Vote already submitted for this session"}), 400
|
790 |
+
|
791 |
+
# Get model IDs and audio paths
|
792 |
+
chosen_id = (
|
793 |
+
session_data["model_a"] if chosen_model_key == "a" else session_data["model_b"]
|
794 |
+
)
|
795 |
+
rejected_id = (
|
796 |
+
session_data["model_b"] if chosen_model_key == "a" else session_data["model_a"]
|
797 |
+
)
|
798 |
+
chosen_audio_path = (
|
799 |
+
session_data["audio_a"] if chosen_model_key == "a" else session_data["audio_b"]
|
800 |
+
)
|
801 |
+
rejected_audio_path = (
|
802 |
+
session_data["audio_b"] if chosen_model_key == "a" else session_data["audio_a"]
|
803 |
+
)
|
804 |
+
|
805 |
+
# Calculate session duration and gather analytics data
|
806 |
+
vote_time = datetime.utcnow()
|
807 |
+
session_duration = (vote_time - session_data["created_at"]).total_seconds()
|
808 |
+
client_ip = get_client_ip()
|
809 |
+
user_agent = request.headers.get('User-Agent')
|
810 |
+
cache_hit = session_data.get("cache_hit", False)
|
811 |
+
|
812 |
+
# Record vote in database with analytics data
|
813 |
+
vote, error = record_vote(
|
814 |
+
current_user.id,
|
815 |
+
session_data["text"],
|
816 |
+
chosen_id,
|
817 |
+
rejected_id,
|
818 |
+
ModelType.TTS,
|
819 |
+
session_duration=session_duration,
|
820 |
+
ip_address=client_ip,
|
821 |
+
user_agent=user_agent,
|
822 |
+
generation_date=session_data["created_at"],
|
823 |
+
cache_hit=cache_hit,
|
824 |
+
all_dataset_sentences=all_harvard_sentences
|
825 |
+
)
|
826 |
+
|
827 |
+
if error:
|
828 |
+
return jsonify({"error": error}), 500
|
829 |
+
|
830 |
+
# Mark sentence as consumed AFTER successful vote recording (only for dataset sentences)
|
831 |
+
if vote and vote.sentence_origin == 'dataset' and vote.counts_for_public_leaderboard:
|
832 |
+
try:
|
833 |
+
mark_sentence_consumed(session_data["text"], session_id=session_id, usage_type='voted')
|
834 |
+
app.logger.info(f"Marked dataset sentence as consumed after vote: '{session_data['text'][:50]}...'")
|
835 |
+
except Exception as e:
|
836 |
+
app.logger.error(f"Error marking sentence as consumed after vote: {str(e)}")
|
837 |
+
|
838 |
+
# --- Save preference data ---
|
839 |
+
try:
|
840 |
+
vote_uuid = str(uuid.uuid4())
|
841 |
+
vote_dir = os.path.join("./votes", vote_uuid)
|
842 |
+
os.makedirs(vote_dir, exist_ok=True)
|
843 |
+
|
844 |
+
# Copy audio files
|
845 |
+
shutil.copy(chosen_audio_path, os.path.join(vote_dir, "chosen.wav"))
|
846 |
+
shutil.copy(rejected_audio_path, os.path.join(vote_dir, "rejected.wav"))
|
847 |
+
|
848 |
+
# Create metadata
|
849 |
+
chosen_model_obj = Model.query.get(chosen_id)
|
850 |
+
rejected_model_obj = Model.query.get(rejected_id)
|
851 |
+
metadata = {
|
852 |
+
"text": session_data["text"],
|
853 |
+
"chosen_model": chosen_model_obj.name if chosen_model_obj else "Unknown",
|
854 |
+
"chosen_model_id": chosen_model_obj.id if chosen_model_obj else "Unknown",
|
855 |
+
"rejected_model": rejected_model_obj.name if rejected_model_obj else "Unknown",
|
856 |
+
"rejected_model_id": rejected_model_obj.id if rejected_model_obj else "Unknown",
|
857 |
+
"session_id": session_id,
|
858 |
+
"timestamp": datetime.utcnow().isoformat(),
|
859 |
+
"username": current_user.username,
|
860 |
+
"model_type": "TTS"
|
861 |
+
}
|
862 |
+
with open(os.path.join(vote_dir, "metadata.json"), "w") as f:
|
863 |
+
json.dump(metadata, f, indent=2)
|
864 |
+
|
865 |
+
except Exception as e:
|
866 |
+
app.logger.error(f"Error saving preference data for vote {session_id}: {str(e)}")
|
867 |
+
# Continue even if saving preference data fails, vote is already recorded
|
868 |
+
|
869 |
+
# Mark session as voted
|
870 |
+
session_data["voted"] = True
|
871 |
+
|
872 |
+
# Check for coordinated voting campaigns (async to not slow down response)
|
873 |
+
try:
|
874 |
+
from threading import Thread
|
875 |
+
campaign_check_thread = Thread(target=check_for_coordinated_campaigns)
|
876 |
+
campaign_check_thread.daemon = True
|
877 |
+
campaign_check_thread.start()
|
878 |
+
except Exception as e:
|
879 |
+
app.logger.error(f"Error starting coordinated campaign check thread: {str(e)}")
|
880 |
+
|
881 |
+
# Return updated models (use previously fetched objects)
|
882 |
+
return jsonify(
|
883 |
+
{
|
884 |
+
"success": True,
|
885 |
+
"chosen_model": {"id": chosen_id, "name": chosen_model_obj.name if chosen_model_obj else "Unknown"},
|
886 |
+
"rejected_model": {
|
887 |
+
"id": rejected_id,
|
888 |
+
"name": rejected_model_obj.name if rejected_model_obj else "Unknown",
|
889 |
+
},
|
890 |
+
"names": {
|
891 |
+
"a": (
|
892 |
+
chosen_model_obj.name if chosen_model_key == "a" else rejected_model_obj.name
|
893 |
+
if chosen_model_obj and rejected_model_obj else "Unknown"
|
894 |
+
),
|
895 |
+
"b": (
|
896 |
+
rejected_model_obj.name if chosen_model_key == "a" else chosen_model_obj.name
|
897 |
+
if chosen_model_obj and rejected_model_obj else "Unknown"
|
898 |
+
),
|
899 |
+
},
|
900 |
+
}
|
901 |
+
)
|
902 |
+
|
903 |
+
|
904 |
+
def cleanup_session(session_id):
|
905 |
+
"""Remove session and its audio files"""
|
906 |
+
if session_id in app.tts_sessions:
|
907 |
+
session = app.tts_sessions[session_id]
|
908 |
+
|
909 |
+
# Remove audio files
|
910 |
+
for audio_file in [session["audio_a"], session["audio_b"]]:
|
911 |
+
if os.path.exists(audio_file):
|
912 |
+
try:
|
913 |
+
os.remove(audio_file)
|
914 |
+
except Exception as e:
|
915 |
+
app.logger.error(f"Error removing audio file: {str(e)}")
|
916 |
+
|
917 |
+
# Remove session
|
918 |
+
del app.tts_sessions[session_id]
|
919 |
+
|
920 |
+
|
921 |
+
@app.route("/api/conversational/generate", methods=["POST"])
|
922 |
+
@limiter.limit("5 per minute")
|
923 |
+
def generate_podcast():
|
924 |
+
# If verification not setup, handle it first
|
925 |
+
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
|
926 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
927 |
+
|
928 |
+
# Require user to be logged in to generate audio
|
929 |
+
if not current_user.is_authenticated:
|
930 |
+
return jsonify({"error": "You must be logged in to generate audio"}), 401
|
931 |
+
|
932 |
+
data = request.json
|
933 |
+
script = data.get("script")
|
934 |
+
|
935 |
+
if not script or not isinstance(script, list) or len(script) < 2:
|
936 |
+
return jsonify({"error": "Invalid script format or too short"}), 400
|
937 |
+
|
938 |
+
# Validate script format
|
939 |
+
for line in script:
|
940 |
+
if not isinstance(line, dict) or "text" not in line or "speaker_id" not in line:
|
941 |
+
return (
|
942 |
+
jsonify(
|
943 |
+
{
|
944 |
+
"error": "Invalid script line format. Each line must have text and speaker_id"
|
945 |
+
}
|
946 |
+
),
|
947 |
+
400,
|
948 |
+
)
|
949 |
+
if (
|
950 |
+
not line["text"]
|
951 |
+
or not isinstance(line["speaker_id"], int)
|
952 |
+
or line["speaker_id"] not in [0, 1]
|
953 |
+
):
|
954 |
+
return (
|
955 |
+
jsonify({"error": "Invalid script content. Speaker ID must be 0 or 1"}),
|
956 |
+
400,
|
957 |
+
)
|
958 |
+
|
959 |
+
# Get two conversational models (currently only CSM and PlayDialog)
|
960 |
+
available_models = Model.query.filter_by(
|
961 |
+
model_type=ModelType.CONVERSATIONAL, is_active=True
|
962 |
+
).all()
|
963 |
+
|
964 |
+
if len(available_models) < 2:
|
965 |
+
return jsonify({"error": "Not enough conversational models available"}), 500
|
966 |
+
|
967 |
+
selected_models = get_weighted_random_models(available_models, 2, ModelType.CONVERSATIONAL)
|
968 |
+
|
969 |
+
try:
|
970 |
+
# Generate audio for both models concurrently
|
971 |
+
audio_files = []
|
972 |
+
model_ids = []
|
973 |
+
|
974 |
+
# Function to process a single model
|
975 |
+
def process_model(model):
|
976 |
+
# Call conversational TTS service
|
977 |
+
audio_content = predict_tts(script, model.id)
|
978 |
+
|
979 |
+
# Save to temp file with unique name
|
980 |
+
file_uuid = str(uuid.uuid4())
|
981 |
+
dest_path = os.path.join(TEMP_AUDIO_DIR, f"{file_uuid}.wav")
|
982 |
+
|
983 |
+
with open(dest_path, "wb") as f:
|
984 |
+
f.write(audio_content)
|
985 |
+
|
986 |
+
return {"model_id": model.id, "audio_path": dest_path}
|
987 |
+
|
988 |
+
# Use ThreadPoolExecutor to process models concurrently
|
989 |
+
with ThreadPoolExecutor(max_workers=2) as executor:
|
990 |
+
results = list(executor.map(process_model, selected_models))
|
991 |
+
|
992 |
+
# Extract results
|
993 |
+
for result in results:
|
994 |
+
model_ids.append(result["model_id"])
|
995 |
+
audio_files.append(result["audio_path"])
|
996 |
+
|
997 |
+
# Create session
|
998 |
+
session_id = str(uuid.uuid4())
|
999 |
+
script_text = " ".join([line["text"] for line in script])
|
1000 |
+
app.conversational_sessions[session_id] = {
|
1001 |
+
"model_a": model_ids[0],
|
1002 |
+
"model_b": model_ids[1],
|
1003 |
+
"audio_a": audio_files[0],
|
1004 |
+
"audio_b": audio_files[1],
|
1005 |
+
"text": script_text[:1000], # Limit text length
|
1006 |
+
"created_at": datetime.utcnow(),
|
1007 |
+
"expires_at": datetime.utcnow() + timedelta(minutes=30),
|
1008 |
+
"voted": False,
|
1009 |
+
"script": script,
|
1010 |
+
"cache_hit": False, # Conversational is always generated on-demand
|
1011 |
+
}
|
1012 |
+
|
1013 |
+
# Return audio file paths and session
|
1014 |
+
return jsonify(
|
1015 |
+
{
|
1016 |
+
"session_id": session_id,
|
1017 |
+
"audio_a": f"/api/conversational/audio/{session_id}/a",
|
1018 |
+
"audio_b": f"/api/conversational/audio/{session_id}/b",
|
1019 |
+
"expires_in": 1800, # 30 minutes in seconds
|
1020 |
+
}
|
1021 |
+
)
|
1022 |
+
|
1023 |
+
except Exception as e:
|
1024 |
+
app.logger.error(f"Conversational generation error: {str(e)}")
|
1025 |
+
return jsonify({"error": f"Failed to generate podcast: {str(e)}"}), 500
|
1026 |
+
|
1027 |
+
|
1028 |
+
@app.route("/api/conversational/audio/<session_id>/<model_key>")
|
1029 |
+
def get_podcast_audio(session_id, model_key):
|
1030 |
+
# If verification not setup, handle it first
|
1031 |
+
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
|
1032 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
1033 |
+
|
1034 |
+
if session_id not in app.conversational_sessions:
|
1035 |
+
return jsonify({"error": "Invalid or expired session"}), 404
|
1036 |
+
|
1037 |
+
session_data = app.conversational_sessions[session_id]
|
1038 |
+
|
1039 |
+
# Check if session expired
|
1040 |
+
if datetime.utcnow() > session_data["expires_at"]:
|
1041 |
+
cleanup_conversational_session(session_id)
|
1042 |
+
return jsonify({"error": "Session expired"}), 410
|
1043 |
+
|
1044 |
+
if model_key == "a":
|
1045 |
+
audio_path = session_data["audio_a"]
|
1046 |
+
elif model_key == "b":
|
1047 |
+
audio_path = session_data["audio_b"]
|
1048 |
+
else:
|
1049 |
+
return jsonify({"error": "Invalid model key"}), 400
|
1050 |
+
|
1051 |
+
# Check if file exists
|
1052 |
+
if not os.path.exists(audio_path):
|
1053 |
+
return jsonify({"error": "Audio file not found"}), 404
|
1054 |
+
|
1055 |
+
return send_file(audio_path, mimetype="audio/wav")
|
1056 |
+
|
1057 |
+
|
1058 |
+
@app.route("/api/conversational/vote", methods=["POST"])
|
1059 |
+
@limiter.limit("30 per minute")
|
1060 |
+
def submit_podcast_vote():
|
1061 |
+
# If verification not setup, handle it first
|
1062 |
+
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
|
1063 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
1064 |
+
|
1065 |
+
# Require user to be logged in to vote
|
1066 |
+
if not current_user.is_authenticated:
|
1067 |
+
return jsonify({"error": "You must be logged in to vote"}), 401
|
1068 |
+
|
1069 |
+
# Security checks for vote manipulation prevention
|
1070 |
+
client_ip = get_client_ip()
|
1071 |
+
vote_allowed, security_reason, security_score = is_vote_allowed(current_user.id, client_ip)
|
1072 |
+
|
1073 |
+
if not vote_allowed:
|
1074 |
+
app.logger.warning(f"Conversational vote blocked for user {current_user.username} (ID: {current_user.id}): {security_reason} (Score: {security_score})")
|
1075 |
+
return jsonify({"error": f"Vote not allowed: {security_reason}"}), 403
|
1076 |
+
|
1077 |
+
data = request.json
|
1078 |
+
session_id = data.get("session_id")
|
1079 |
+
chosen_model_key = data.get("chosen_model") # "a" or "b"
|
1080 |
+
|
1081 |
+
if not session_id or session_id not in app.conversational_sessions:
|
1082 |
+
return jsonify({"error": "Invalid or expired session"}), 404
|
1083 |
+
|
1084 |
+
if not chosen_model_key or chosen_model_key not in ["a", "b"]:
|
1085 |
+
return jsonify({"error": "Invalid chosen model"}), 400
|
1086 |
+
|
1087 |
+
session_data = app.conversational_sessions[session_id]
|
1088 |
+
|
1089 |
+
# Check if session expired
|
1090 |
+
if datetime.utcnow() > session_data["expires_at"]:
|
1091 |
+
cleanup_conversational_session(session_id)
|
1092 |
+
return jsonify({"error": "Session expired"}), 410
|
1093 |
+
|
1094 |
+
# Check if already voted
|
1095 |
+
if session_data["voted"]:
|
1096 |
+
return jsonify({"error": "Vote already submitted for this session"}), 400
|
1097 |
+
|
1098 |
+
# Get model IDs and audio paths
|
1099 |
+
chosen_id = (
|
1100 |
+
session_data["model_a"] if chosen_model_key == "a" else session_data["model_b"]
|
1101 |
+
)
|
1102 |
+
rejected_id = (
|
1103 |
+
session_data["model_b"] if chosen_model_key == "a" else session_data["model_a"]
|
1104 |
+
)
|
1105 |
+
chosen_audio_path = (
|
1106 |
+
session_data["audio_a"] if chosen_model_key == "a" else session_data["audio_b"]
|
1107 |
+
)
|
1108 |
+
rejected_audio_path = (
|
1109 |
+
session_data["audio_b"] if chosen_model_key == "a" else session_data["audio_a"]
|
1110 |
+
)
|
1111 |
+
|
1112 |
+
# Calculate session duration and gather analytics data
|
1113 |
+
vote_time = datetime.utcnow()
|
1114 |
+
session_duration = (vote_time - session_data["created_at"]).total_seconds()
|
1115 |
+
client_ip = get_client_ip()
|
1116 |
+
user_agent = request.headers.get('User-Agent')
|
1117 |
+
cache_hit = session_data.get("cache_hit", False)
|
1118 |
+
|
1119 |
+
# Record vote in database with analytics data
|
1120 |
+
vote, error = record_vote(
|
1121 |
+
current_user.id,
|
1122 |
+
session_data["text"],
|
1123 |
+
chosen_id,
|
1124 |
+
rejected_id,
|
1125 |
+
ModelType.CONVERSATIONAL,
|
1126 |
+
session_duration=session_duration,
|
1127 |
+
ip_address=client_ip,
|
1128 |
+
user_agent=user_agent,
|
1129 |
+
generation_date=session_data["created_at"],
|
1130 |
+
cache_hit=cache_hit,
|
1131 |
+
all_dataset_sentences=all_harvard_sentences # Note: conversational uses scripts, not sentences
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
if error:
|
1135 |
+
return jsonify({"error": error}), 500
|
1136 |
+
|
1137 |
+
# Mark sentence as consumed AFTER successful vote recording (only for dataset sentences)
|
1138 |
+
# Note: Conversational votes typically use custom scripts, not dataset sentences
|
1139 |
+
if vote and vote.sentence_origin == 'dataset' and vote.counts_for_public_leaderboard:
|
1140 |
+
try:
|
1141 |
+
mark_sentence_consumed(session_data["text"], session_id=session_id, usage_type='voted')
|
1142 |
+
app.logger.info(f"Marked dataset sentence as consumed after conversational vote: '{session_data['text'][:50]}...'")
|
1143 |
+
except Exception as e:
|
1144 |
+
app.logger.error(f"Error marking sentence as consumed after conversational vote: {str(e)}")
|
1145 |
+
|
1146 |
+
# --- Save preference data ---\
|
1147 |
+
try:
|
1148 |
+
vote_uuid = str(uuid.uuid4())
|
1149 |
+
vote_dir = os.path.join("./votes", vote_uuid)
|
1150 |
+
os.makedirs(vote_dir, exist_ok=True)
|
1151 |
+
|
1152 |
+
# Copy audio files
|
1153 |
+
shutil.copy(chosen_audio_path, os.path.join(vote_dir, "chosen.wav"))
|
1154 |
+
shutil.copy(rejected_audio_path, os.path.join(vote_dir, "rejected.wav"))
|
1155 |
+
|
1156 |
+
# Create metadata
|
1157 |
+
chosen_model_obj = Model.query.get(chosen_id)
|
1158 |
+
rejected_model_obj = Model.query.get(rejected_id)
|
1159 |
+
metadata = {
|
1160 |
+
"script": session_data["script"], # Save the full script
|
1161 |
+
"chosen_model": chosen_model_obj.name if chosen_model_obj else "Unknown",
|
1162 |
+
"chosen_model_id": chosen_model_obj.id if chosen_model_obj else "Unknown",
|
1163 |
+
"rejected_model": rejected_model_obj.name if rejected_model_obj else "Unknown",
|
1164 |
+
"rejected_model_id": rejected_model_obj.id if rejected_model_obj else "Unknown",
|
1165 |
+
"session_id": session_id,
|
1166 |
+
"timestamp": datetime.utcnow().isoformat(),
|
1167 |
+
"username": current_user.username,
|
1168 |
+
"model_type": "CONVERSATIONAL"
|
1169 |
+
}
|
1170 |
+
with open(os.path.join(vote_dir, "metadata.json"), "w") as f:
|
1171 |
+
json.dump(metadata, f, indent=2)
|
1172 |
+
|
1173 |
+
except Exception as e:
|
1174 |
+
app.logger.error(f"Error saving preference data for conversational vote {session_id}: {str(e)}")
|
1175 |
+
# Continue even if saving preference data fails, vote is already recorded
|
1176 |
+
|
1177 |
+
# Mark session as voted
|
1178 |
+
session_data["voted"] = True
|
1179 |
+
|
1180 |
+
# Check for coordinated voting campaigns (async to not slow down response)
|
1181 |
+
try:
|
1182 |
+
from threading import Thread
|
1183 |
+
campaign_check_thread = Thread(target=check_for_coordinated_campaigns)
|
1184 |
+
campaign_check_thread.daemon = True
|
1185 |
+
campaign_check_thread.start()
|
1186 |
+
except Exception as e:
|
1187 |
+
app.logger.error(f"Error starting coordinated campaign check thread: {str(e)}")
|
1188 |
+
|
1189 |
+
# Return updated models (use previously fetched objects)
|
1190 |
+
return jsonify(
|
1191 |
+
{
|
1192 |
+
"success": True,
|
1193 |
+
"chosen_model": {"id": chosen_id, "name": chosen_model_obj.name if chosen_model_obj else "Unknown"},
|
1194 |
+
"rejected_model": {
|
1195 |
+
"id": rejected_id,
|
1196 |
+
"name": rejected_model_obj.name if rejected_model_obj else "Unknown",
|
1197 |
+
},
|
1198 |
+
"names": {
|
1199 |
+
"a": Model.query.get(session_data["model_a"]).name,
|
1200 |
+
"b": Model.query.get(session_data["model_b"]).name,
|
1201 |
+
},
|
1202 |
+
}
|
1203 |
+
)
|
1204 |
+
|
1205 |
+
|
1206 |
+
def cleanup_conversational_session(session_id):
|
1207 |
+
"""Remove conversational session and its audio files"""
|
1208 |
+
if session_id in app.conversational_sessions:
|
1209 |
+
session = app.conversational_sessions[session_id]
|
1210 |
+
|
1211 |
+
# Remove audio files
|
1212 |
+
for audio_file in [session["audio_a"], session["audio_b"]]:
|
1213 |
+
if os.path.exists(audio_file):
|
1214 |
+
try:
|
1215 |
+
os.remove(audio_file)
|
1216 |
+
except Exception as e:
|
1217 |
+
app.logger.error(
|
1218 |
+
f"Error removing conversational audio file: {str(e)}"
|
1219 |
+
)
|
1220 |
+
|
1221 |
+
# Remove session
|
1222 |
+
del app.conversational_sessions[session_id]
|
1223 |
+
|
1224 |
+
|
1225 |
+
# Schedule periodic cleanup
|
1226 |
+
def setup_cleanup():
|
1227 |
+
def cleanup_expired_sessions():
|
1228 |
+
with app.app_context(): # Ensure app context for logging
|
1229 |
+
current_time = datetime.utcnow()
|
1230 |
+
# Cleanup TTS sessions
|
1231 |
+
expired_tts_sessions = [
|
1232 |
+
sid
|
1233 |
+
for sid, session_data in app.tts_sessions.items()
|
1234 |
+
if current_time > session_data["expires_at"]
|
1235 |
+
]
|
1236 |
+
for sid in expired_tts_sessions:
|
1237 |
+
cleanup_session(sid)
|
1238 |
+
|
1239 |
+
# Cleanup conversational sessions
|
1240 |
+
expired_conv_sessions = [
|
1241 |
+
sid
|
1242 |
+
for sid, session_data in app.conversational_sessions.items()
|
1243 |
+
if current_time > session_data["expires_at"]
|
1244 |
+
]
|
1245 |
+
for sid in expired_conv_sessions:
|
1246 |
+
cleanup_conversational_session(sid)
|
1247 |
+
app.logger.info(f"Cleaned up {len(expired_tts_sessions)} TTS and {len(expired_conv_sessions)} conversational sessions.")
|
1248 |
+
|
1249 |
+
# Also cleanup potentially expired cache entries (e.g., > 1 hour old)
|
1250 |
+
# This prevents stale cache entries if generation is slow or failing
|
1251 |
+
# cleanup_stale_cache_entries()
|
1252 |
+
|
1253 |
+
# Run cleanup every 15 minutes
|
1254 |
+
scheduler = BackgroundScheduler(daemon=True) # Run scheduler as daemon thread
|
1255 |
+
scheduler.add_job(cleanup_expired_sessions, "interval", minutes=15)
|
1256 |
+
scheduler.start()
|
1257 |
+
print("Cleanup scheduler started") # Use print for startup messages
|
1258 |
+
|
1259 |
+
|
1260 |
+
# Schedule periodic tasks (database sync and preference upload)
|
1261 |
+
def setup_periodic_tasks():
|
1262 |
+
"""Setup periodic database synchronization and preference data upload for Spaces"""
|
1263 |
+
if not IS_SPACES:
|
1264 |
+
return
|
1265 |
+
|
1266 |
+
db_path = app.config["SQLALCHEMY_DATABASE_URI"].replace("sqlite:///", "instance/") # Get relative path
|
1267 |
+
preferences_repo_id = "TTS-AGI/arena-v2-preferences"
|
1268 |
+
database_repo_id = "TTS-AGI/database-arena-v2"
|
1269 |
+
votes_dir = "./votes"
|
1270 |
+
|
1271 |
+
def sync_database():
|
1272 |
+
"""Uploads the database to HF dataset"""
|
1273 |
+
with app.app_context(): # Ensure app context for logging
|
1274 |
+
try:
|
1275 |
+
if not os.path.exists(db_path):
|
1276 |
+
app.logger.warning(f"Database file not found at {db_path}, skipping sync.")
|
1277 |
+
return
|
1278 |
+
|
1279 |
+
api = HfApi(token=os.getenv("HF_TOKEN"))
|
1280 |
+
api.upload_file(
|
1281 |
+
path_or_fileobj=db_path,
|
1282 |
+
path_in_repo="tts_arena.db",
|
1283 |
+
repo_id=database_repo_id,
|
1284 |
+
repo_type="dataset",
|
1285 |
+
)
|
1286 |
+
app.logger.info(f"Database uploaded to {database_repo_id} at {datetime.utcnow()}")
|
1287 |
+
except Exception as e:
|
1288 |
+
app.logger.error(f"Error uploading database to {database_repo_id}: {str(e)}")
|
1289 |
+
|
1290 |
+
def sync_preferences_data():
|
1291 |
+
"""Zips and uploads preference data folders in batches to HF dataset"""
|
1292 |
+
with app.app_context(): # Ensure app context for logging
|
1293 |
+
if not os.path.isdir(votes_dir):
|
1294 |
+
return # Don't log every 5 mins if dir doesn't exist yet
|
1295 |
+
|
1296 |
+
temp_batch_dir = None # Initialize to manage cleanup
|
1297 |
+
temp_individual_zip_dir = None # Initialize for individual zips
|
1298 |
+
local_batch_zip_path = None # Initialize for batch zip path
|
1299 |
+
|
1300 |
+
try:
|
1301 |
+
api = HfApi(token=os.getenv("HF_TOKEN"))
|
1302 |
+
vote_uuids = [d for d in os.listdir(votes_dir) if os.path.isdir(os.path.join(votes_dir, d))]
|
1303 |
+
|
1304 |
+
if not vote_uuids:
|
1305 |
+
return # No data to process
|
1306 |
+
|
1307 |
+
app.logger.info(f"Found {len(vote_uuids)} vote directories to process.")
|
1308 |
+
|
1309 |
+
# Create temporary directories
|
1310 |
+
temp_batch_dir = tempfile.mkdtemp(prefix="hf_batch_")
|
1311 |
+
temp_individual_zip_dir = tempfile.mkdtemp(prefix="hf_indiv_zips_")
|
1312 |
+
app.logger.debug(f"Created temp directories: {temp_batch_dir}, {temp_individual_zip_dir}")
|
1313 |
+
|
1314 |
+
processed_vote_dirs = []
|
1315 |
+
individual_zips_in_batch = []
|
1316 |
+
|
1317 |
+
# 1. Create individual zips and move them to the batch directory
|
1318 |
+
for vote_uuid in vote_uuids:
|
1319 |
+
dir_path = os.path.join(votes_dir, vote_uuid)
|
1320 |
+
individual_zip_base_path = os.path.join(temp_individual_zip_dir, vote_uuid)
|
1321 |
+
individual_zip_path = f"{individual_zip_base_path}.zip"
|
1322 |
+
|
1323 |
+
try:
|
1324 |
+
shutil.make_archive(individual_zip_base_path, 'zip', dir_path)
|
1325 |
+
app.logger.debug(f"Created individual zip: {individual_zip_path}")
|
1326 |
+
|
1327 |
+
# Move the created zip into the batch directory
|
1328 |
+
final_individual_zip_path = os.path.join(temp_batch_dir, f"{vote_uuid}.zip")
|
1329 |
+
shutil.move(individual_zip_path, final_individual_zip_path)
|
1330 |
+
app.logger.debug(f"Moved individual zip to batch dir: {final_individual_zip_path}")
|
1331 |
+
|
1332 |
+
processed_vote_dirs.append(dir_path) # Mark original dir for later cleanup
|
1333 |
+
individual_zips_in_batch.append(final_individual_zip_path)
|
1334 |
+
|
1335 |
+
except Exception as zip_err:
|
1336 |
+
app.logger.error(f"Error creating or moving zip for {vote_uuid}: {str(zip_err)}")
|
1337 |
+
# Clean up partial zip if it exists
|
1338 |
+
if os.path.exists(individual_zip_path):
|
1339 |
+
try:
|
1340 |
+
os.remove(individual_zip_path)
|
1341 |
+
except OSError:
|
1342 |
+
pass
|
1343 |
+
# Continue processing other votes
|
1344 |
+
|
1345 |
+
# Clean up the temporary dir used for creating individual zips
|
1346 |
+
shutil.rmtree(temp_individual_zip_dir)
|
1347 |
+
temp_individual_zip_dir = None # Mark as cleaned
|
1348 |
+
app.logger.debug("Cleaned up temporary individual zip directory.")
|
1349 |
+
|
1350 |
+
if not individual_zips_in_batch:
|
1351 |
+
app.logger.warning("No individual zips were successfully created for batching.")
|
1352 |
+
# Clean up batch dir if it's empty or only contains failed attempts
|
1353 |
+
if temp_batch_dir and os.path.exists(temp_batch_dir):
|
1354 |
+
shutil.rmtree(temp_batch_dir)
|
1355 |
+
temp_batch_dir = None
|
1356 |
+
return
|
1357 |
+
|
1358 |
+
# 2. Create the batch zip file
|
1359 |
+
batch_timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
|
1360 |
+
batch_uuid_short = str(uuid.uuid4())[:8]
|
1361 |
+
batch_zip_filename = f"{batch_timestamp}_batch_{batch_uuid_short}.zip"
|
1362 |
+
# Create batch zip in a standard temp location first
|
1363 |
+
local_batch_zip_base = os.path.join(tempfile.gettempdir(), batch_zip_filename.replace('.zip', ''))
|
1364 |
+
local_batch_zip_path = f"{local_batch_zip_base}.zip"
|
1365 |
+
|
1366 |
+
app.logger.info(f"Creating batch zip: {local_batch_zip_path} with {len(individual_zips_in_batch)} individual zips.")
|
1367 |
+
shutil.make_archive(local_batch_zip_base, 'zip', temp_batch_dir)
|
1368 |
+
app.logger.info(f"Batch zip created successfully: {local_batch_zip_path}")
|
1369 |
+
|
1370 |
+
# 3. Upload the batch zip file
|
1371 |
+
hf_repo_path = f"votes/{year}/{month}/{batch_zip_filename}"
|
1372 |
+
app.logger.info(f"Uploading batch zip to HF Hub: {preferences_repo_id}/{hf_repo_path}")
|
1373 |
+
|
1374 |
+
api.upload_file(
|
1375 |
+
path_or_fileobj=local_batch_zip_path,
|
1376 |
+
path_in_repo=hf_repo_path,
|
1377 |
+
repo_id=preferences_repo_id,
|
1378 |
+
repo_type="dataset",
|
1379 |
+
commit_message=f"Add batch preference data {batch_zip_filename} ({len(individual_zips_in_batch)} votes)"
|
1380 |
+
)
|
1381 |
+
app.logger.info(f"Successfully uploaded batch {batch_zip_filename} to {preferences_repo_id}")
|
1382 |
+
|
1383 |
+
# 4. Cleanup after successful upload
|
1384 |
+
app.logger.info("Cleaning up local files after successful upload.")
|
1385 |
+
# Remove original vote directories that were successfully zipped and uploaded
|
1386 |
+
for dir_path in processed_vote_dirs:
|
1387 |
+
try:
|
1388 |
+
shutil.rmtree(dir_path)
|
1389 |
+
app.logger.debug(f"Removed original vote directory: {dir_path}")
|
1390 |
+
except OSError as e:
|
1391 |
+
app.logger.error(f"Error removing processed vote directory {dir_path}: {str(e)}")
|
1392 |
+
|
1393 |
+
# Remove the temporary batch directory (containing the individual zips)
|
1394 |
+
shutil.rmtree(temp_batch_dir)
|
1395 |
+
temp_batch_dir = None
|
1396 |
+
app.logger.debug("Removed temporary batch directory.")
|
1397 |
+
|
1398 |
+
# Remove the local batch zip file
|
1399 |
+
os.remove(local_batch_zip_path)
|
1400 |
+
local_batch_zip_path = None
|
1401 |
+
app.logger.debug("Removed local batch zip file.")
|
1402 |
+
|
1403 |
+
app.logger.info(f"Finished preference data sync. Uploaded batch {batch_zip_filename}.")
|
1404 |
+
|
1405 |
+
except Exception as e:
|
1406 |
+
app.logger.error(f"Error during preference data batch sync: {str(e)}", exc_info=True)
|
1407 |
+
# If upload failed, the local batch zip might exist, clean it up.
|
1408 |
+
if local_batch_zip_path and os.path.exists(local_batch_zip_path):
|
1409 |
+
try:
|
1410 |
+
os.remove(local_batch_zip_path)
|
1411 |
+
app.logger.debug("Cleaned up local batch zip after failed upload.")
|
1412 |
+
except OSError as clean_err:
|
1413 |
+
app.logger.error(f"Error cleaning up batch zip after failed upload: {clean_err}")
|
1414 |
+
# Do NOT remove temp_batch_dir if it exists; its contents will be retried next time.
|
1415 |
+
# Do NOT remove original vote directories if upload failed.
|
1416 |
+
|
1417 |
+
finally:
|
1418 |
+
# Final cleanup for temporary directories in case of unexpected exits
|
1419 |
+
if temp_individual_zip_dir and os.path.exists(temp_individual_zip_dir):
|
1420 |
+
try:
|
1421 |
+
shutil.rmtree(temp_individual_zip_dir)
|
1422 |
+
except Exception as final_clean_err:
|
1423 |
+
app.logger.error(f"Error in final cleanup (indiv zips): {final_clean_err}")
|
1424 |
+
# Only clean up batch dir in finally block if it *wasn't* kept intentionally after upload failure
|
1425 |
+
if temp_batch_dir and os.path.exists(temp_batch_dir):
|
1426 |
+
# Check if an upload attempt happened and failed
|
1427 |
+
upload_failed = 'e' in locals() and isinstance(e, Exception) # Crude check if exception occurred
|
1428 |
+
if not upload_failed: # If no upload error or upload succeeded, clean up
|
1429 |
+
try:
|
1430 |
+
shutil.rmtree(temp_batch_dir)
|
1431 |
+
except Exception as final_clean_err:
|
1432 |
+
app.logger.error(f"Error in final cleanup (batch dir): {final_clean_err}")
|
1433 |
+
else:
|
1434 |
+
app.logger.warning("Keeping temporary batch directory due to upload failure for next attempt.")
|
1435 |
+
|
1436 |
+
|
1437 |
+
# Schedule periodic tasks
|
1438 |
+
scheduler = BackgroundScheduler()
|
1439 |
+
# Sync database less frequently if needed, e.g., every 15 minutes
|
1440 |
+
scheduler.add_job(sync_database, "interval", minutes=15, id="sync_db_job")
|
1441 |
+
# Sync preferences more frequently
|
1442 |
+
scheduler.add_job(sync_preferences_data, "interval", minutes=5, id="sync_pref_job")
|
1443 |
+
scheduler.start()
|
1444 |
+
print("Periodic tasks scheduler started (DB sync and Preferences upload)") # Use print for startup
|
1445 |
+
|
1446 |
+
|
1447 |
+
@app.cli.command("init-db")
|
1448 |
+
def init_db():
|
1449 |
+
"""Initialize the database."""
|
1450 |
+
with app.app_context():
|
1451 |
+
db.create_all()
|
1452 |
+
print("Database initialized!")
|
1453 |
+
|
1454 |
+
|
1455 |
+
@app.route("/api/toggle-leaderboard-visibility", methods=["POST"])
|
1456 |
+
def toggle_leaderboard_visibility():
|
1457 |
+
"""Toggle whether the current user appears in the top voters leaderboard"""
|
1458 |
+
if not current_user.is_authenticated:
|
1459 |
+
return jsonify({"error": "You must be logged in to change this setting"}), 401
|
1460 |
+
|
1461 |
+
new_status = toggle_user_leaderboard_visibility(current_user.id)
|
1462 |
+
if new_status is None:
|
1463 |
+
return jsonify({"error": "User not found"}), 404
|
1464 |
+
|
1465 |
+
return jsonify({
|
1466 |
+
"success": True,
|
1467 |
+
"visible": new_status,
|
1468 |
+
"message": "You are now visible in the voters leaderboard" if new_status else "You are now hidden from the voters leaderboard"
|
1469 |
+
})
|
1470 |
+
|
1471 |
+
|
1472 |
+
@app.route("/api/tts/cached-sentences")
|
1473 |
+
def get_cached_sentences():
|
1474 |
+
"""Returns a list of unconsumed sentences available for random selection."""
|
1475 |
+
# Get unconsumed sentences from the full pool (not just cached ones)
|
1476 |
+
unconsumed_sentences = get_unconsumed_sentences(all_harvard_sentences)
|
1477 |
+
|
1478 |
+
# Limit the response size to avoid overwhelming the frontend
|
1479 |
+
max_sentences = 1000
|
1480 |
+
if len(unconsumed_sentences) > max_sentences:
|
1481 |
+
import random
|
1482 |
+
unconsumed_sentences = random.sample(unconsumed_sentences, max_sentences)
|
1483 |
+
|
1484 |
+
return jsonify(unconsumed_sentences)
|
1485 |
+
|
1486 |
+
|
1487 |
+
@app.route("/api/tts/sentence-stats")
|
1488 |
+
def get_sentence_stats():
|
1489 |
+
"""Returns statistics about sentence consumption."""
|
1490 |
+
total_sentences = len(all_harvard_sentences)
|
1491 |
+
consumed_count = get_consumed_sentences_count()
|
1492 |
+
remaining_count = total_sentences - consumed_count
|
1493 |
+
|
1494 |
+
return jsonify({
|
1495 |
+
"total_sentences": total_sentences,
|
1496 |
+
"consumed_sentences": consumed_count,
|
1497 |
+
"remaining_sentences": remaining_count,
|
1498 |
+
"consumption_percentage": round((consumed_count / total_sentences) * 100, 2) if total_sentences > 0 else 0
|
1499 |
+
})
|
1500 |
+
|
1501 |
+
|
1502 |
+
@app.route("/api/tts/random-sentence")
|
1503 |
+
def get_random_sentence():
|
1504 |
+
"""Returns a random unconsumed sentence."""
|
1505 |
+
random_sentence = get_random_unconsumed_sentence(all_harvard_sentences)
|
1506 |
+
if random_sentence:
|
1507 |
+
return jsonify({"sentence": random_sentence})
|
1508 |
+
else:
|
1509 |
+
total_sentences = len(all_harvard_sentences)
|
1510 |
+
consumed_count = get_consumed_sentences_count()
|
1511 |
+
return jsonify({
|
1512 |
+
"error": "No unconsumed sentences available",
|
1513 |
+
"details": f"All {total_sentences} sentences have been consumed ({consumed_count} total consumed)"
|
1514 |
+
}), 404
|
1515 |
+
|
1516 |
+
|
1517 |
+
def get_weighted_random_models(
|
1518 |
+
applicable_models: list[Model], num_to_select: int, model_type: ModelType
|
1519 |
+
) -> list[Model]:
|
1520 |
+
"""
|
1521 |
+
Selects a specified number of models randomly from a list of applicable_models,
|
1522 |
+
weighting models with fewer votes higher. A smoothing factor is used to ensure
|
1523 |
+
the preference is slight and to prevent models with zero votes from being
|
1524 |
+
overwhelmingly favored. Models are selected without replacement.
|
1525 |
+
|
1526 |
+
Assumes len(applicable_models) >= num_to_select, which should be checked by the caller.
|
1527 |
+
"""
|
1528 |
+
model_votes_counts = {}
|
1529 |
+
for model in applicable_models:
|
1530 |
+
votes = (
|
1531 |
+
Vote.query.filter(Vote.model_type == model_type)
|
1532 |
+
.filter(or_(Vote.model_chosen == model.id, Vote.model_rejected == model.id))
|
1533 |
+
.count()
|
1534 |
+
)
|
1535 |
+
model_votes_counts[model.id] = votes
|
1536 |
+
|
1537 |
+
weights = [
|
1538 |
+
1.0 / (model_votes_counts[model.id] + SMOOTHING_FACTOR_MODEL_SELECTION)
|
1539 |
+
for model in applicable_models
|
1540 |
+
]
|
1541 |
+
|
1542 |
+
selected_models_list = []
|
1543 |
+
# Create copies to modify during selection process
|
1544 |
+
current_candidates = list(applicable_models)
|
1545 |
+
current_weights = list(weights)
|
1546 |
+
|
1547 |
+
# Assumes num_to_select is positive and less than or equal to len(current_candidates)
|
1548 |
+
# Callers should ensure this (e.g., len(available_models) >= 2).
|
1549 |
+
for _ in range(num_to_select):
|
1550 |
+
if not current_candidates: # Safety break
|
1551 |
+
app.logger.warning("Not enough candidates left for weighted selection.")
|
1552 |
+
break
|
1553 |
+
|
1554 |
+
chosen_model = random.choices(current_candidates, weights=current_weights, k=1)[0]
|
1555 |
+
selected_models_list.append(chosen_model)
|
1556 |
+
|
1557 |
+
try:
|
1558 |
+
idx_to_remove = current_candidates.index(chosen_model)
|
1559 |
+
current_candidates.pop(idx_to_remove)
|
1560 |
+
current_weights.pop(idx_to_remove)
|
1561 |
+
except ValueError:
|
1562 |
+
# This should ideally not happen if chosen_model came from current_candidates.
|
1563 |
+
app.logger.error(f"Error removing model {chosen_model.id} from weighted selection candidates.")
|
1564 |
+
break # Avoid potential issues
|
1565 |
+
|
1566 |
+
return selected_models_list
|
1567 |
+
|
1568 |
+
|
1569 |
+
def check_for_coordinated_campaigns():
|
1570 |
+
"""Check all active models for potential coordinated voting campaigns"""
|
1571 |
+
try:
|
1572 |
+
from security import detect_coordinated_voting
|
1573 |
+
from models import Model, ModelType
|
1574 |
+
|
1575 |
+
# Check TTS models
|
1576 |
+
tts_models = Model.query.filter_by(model_type=ModelType.TTS, is_active=True).all()
|
1577 |
+
for model in tts_models:
|
1578 |
+
try:
|
1579 |
+
detect_coordinated_voting(model.id)
|
1580 |
+
except Exception as e:
|
1581 |
+
app.logger.error(f"Error checking coordinated voting for TTS model {model.id}: {str(e)}")
|
1582 |
+
|
1583 |
+
# Check conversational models
|
1584 |
+
conv_models = Model.query.filter_by(model_type=ModelType.CONVERSATIONAL, is_active=True).all()
|
1585 |
+
for model in conv_models:
|
1586 |
+
try:
|
1587 |
+
detect_coordinated_voting(model.id)
|
1588 |
+
except Exception as e:
|
1589 |
+
app.logger.error(f"Error checking coordinated voting for conversational model {model.id}: {str(e)}")
|
1590 |
+
|
1591 |
+
except Exception as e:
|
1592 |
+
app.logger.error(f"Error in coordinated campaign check: {str(e)}")
|
1593 |
+
|
1594 |
|
1595 |
if __name__ == "__main__":
|
1596 |
+
with app.app_context():
|
1597 |
+
# Ensure ./instance and ./votes directories exist
|
1598 |
+
os.makedirs("instance", exist_ok=True)
|
1599 |
+
os.makedirs("./votes", exist_ok=True) # Create votes directory if it doesn't exist
|
1600 |
+
os.makedirs(CACHE_AUDIO_DIR, exist_ok=True) # Ensure cache audio dir exists
|
1601 |
+
|
1602 |
+
# Clean up old cache audio files on startup
|
1603 |
+
try:
|
1604 |
+
app.logger.info(f"Clearing old cache audio files from {CACHE_AUDIO_DIR}")
|
1605 |
+
for filename in os.listdir(CACHE_AUDIO_DIR):
|
1606 |
+
file_path = os.path.join(CACHE_AUDIO_DIR, filename)
|
1607 |
+
try:
|
1608 |
+
if os.path.isfile(file_path) or os.path.islink(file_path):
|
1609 |
+
os.unlink(file_path)
|
1610 |
+
elif os.path.isdir(file_path):
|
1611 |
+
shutil.rmtree(file_path)
|
1612 |
+
except Exception as e:
|
1613 |
+
app.logger.error(f'Failed to delete {file_path}. Reason: {e}')
|
1614 |
+
except Exception as e:
|
1615 |
+
app.logger.error(f"Error clearing cache directory {CACHE_AUDIO_DIR}: {e}")
|
1616 |
+
|
1617 |
+
|
1618 |
+
# Download database if it doesn't exist (only on initial space start)
|
1619 |
+
if IS_SPACES and not os.path.exists(app.config["SQLALCHEMY_DATABASE_URI"].replace("sqlite:///", "")):
|
1620 |
+
try:
|
1621 |
+
print("Database not found, downloading from HF dataset...")
|
1622 |
+
hf_hub_download(
|
1623 |
+
repo_id="TTS-AGI/database-arena-v2",
|
1624 |
+
filename="tts_arena.db",
|
1625 |
+
repo_type="dataset",
|
1626 |
+
local_dir="instance", # download to instance/
|
1627 |
+
token=os.getenv("HF_TOKEN"),
|
1628 |
+
)
|
1629 |
+
print("Database downloaded successfully ✅")
|
1630 |
+
except Exception as e:
|
1631 |
+
print(f"Error downloading database from HF dataset: {str(e)} ⚠️")
|
1632 |
+
|
1633 |
+
|
1634 |
+
db.create_all() # Create tables if they don't exist
|
1635 |
+
insert_initial_models()
|
1636 |
+
# Setup background tasks
|
1637 |
+
initialize_tts_cache() # Start populating the cache
|
1638 |
+
setup_cleanup()
|
1639 |
+
setup_periodic_tasks() # Renamed function call
|
1640 |
+
|
1641 |
+
# Configure Flask to recognize HTTPS when behind a reverse proxy
|
1642 |
+
from werkzeug.middleware.proxy_fix import ProxyFix
|
1643 |
+
|
1644 |
+
# Apply ProxyFix middleware to handle reverse proxy headers
|
1645 |
+
# This ensures Flask generates correct URLs with https scheme
|
1646 |
+
# X-Forwarded-Proto header will be used to detect the original protocol
|
1647 |
+
app.wsgi_app = ProxyFix(app.wsgi_app, x_proto=1, x_host=1)
|
1648 |
+
|
1649 |
+
# Force Flask to prefer HTTPS for generated URLs
|
1650 |
+
app.config["PREFERRED_URL_SCHEME"] = "https"
|
1651 |
+
|
1652 |
+
from waitress import serve
|
1653 |
+
|
1654 |
+
# Configuration for 2 vCPUs:
|
1655 |
+
# - threads: typically 4-8 threads per CPU core is a good balance
|
1656 |
+
# - connection_limit: maximum concurrent connections
|
1657 |
+
# - channel_timeout: prevent hanging connections
|
1658 |
+
threads = 12 # 6 threads per vCPU is a good balance for mixed IO/CPU workloads
|
1659 |
+
|
1660 |
+
if IS_SPACES:
|
1661 |
+
serve(
|
1662 |
+
app,
|
1663 |
+
host="0.0.0.0",
|
1664 |
+
port=int(os.environ.get("PORT", 7860)),
|
1665 |
+
threads=threads,
|
1666 |
+
connection_limit=100,
|
1667 |
+
channel_timeout=30,
|
1668 |
+
url_scheme='https'
|
1669 |
+
)
|
1670 |
+
else:
|
1671 |
+
print(f"Starting Waitress server with {threads} threads")
|
1672 |
+
serve(
|
1673 |
+
app,
|
1674 |
+
host="0.0.0.0",
|
1675 |
+
port=5000,
|
1676 |
+
threads=threads,
|
1677 |
+
connection_limit=100,
|
1678 |
+
channel_timeout=30,
|
1679 |
+
url_scheme='https' # Keep https for local dev if using proxy/tunnel
|
1680 |
+
)
|
migrate.py
CHANGED
@@ -103,6 +103,25 @@ def create_timeout_and_campaign_tables(cursor):
|
|
103 |
else:
|
104 |
click.echo("⏭️ Table 'user_timeout' already exists, skipping")
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
return tables_created
|
107 |
|
108 |
|
@@ -129,12 +148,16 @@ def add_analytics_columns_and_tables(db_path):
|
|
129 |
("ip_address_partial", "VARCHAR(20)"),
|
130 |
("user_agent", "VARCHAR(500)"),
|
131 |
("generation_date", "DATETIME"),
|
132 |
-
("cache_hit", "BOOLEAN")
|
|
|
|
|
|
|
133 |
]
|
134 |
|
135 |
# Define the columns to add to user table
|
136 |
user_columns_to_add = [
|
137 |
-
("hf_account_created", "DATETIME")
|
|
|
138 |
]
|
139 |
|
140 |
added_columns = []
|
@@ -176,6 +199,15 @@ def add_analytics_columns_and_tables(db_path):
|
|
176 |
click.echo("🔒 Creating security and timeout management tables...")
|
177 |
tables_created = create_timeout_and_campaign_tables(cursor)
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
# Commit the changes
|
180 |
conn.commit()
|
181 |
conn.close()
|
@@ -206,10 +238,17 @@ def add_analytics_columns_and_tables(db_path):
|
|
206 |
click.echo("\n🚨 New Security Features Enabled:")
|
207 |
click.echo(" • Automatic coordinated voting campaign detection")
|
208 |
click.echo(" • User timeout management")
|
|
|
|
|
|
|
209 |
click.echo(" • Admin panels for security monitoring")
|
210 |
click.echo("\nNew admin panel sections:")
|
211 |
click.echo(" • /admin/timeouts - Manage user timeouts")
|
212 |
click.echo(" • /admin/campaigns - View coordinated voting campaigns")
|
|
|
|
|
|
|
|
|
213 |
|
214 |
return True
|
215 |
|
@@ -229,11 +268,18 @@ def migrate(database_path, dry_run, backup):
|
|
229 |
"""
|
230 |
Add analytics columns and security tables to the TTS Arena database.
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
DATABASE_PATH: Path to the SQLite database file (e.g., instance/tts_arena.db)
|
233 |
"""
|
234 |
click.echo("🚀 TTS Arena Migration Tool")
|
235 |
-
click.echo("Analytics + Security
|
236 |
-
click.echo("=" *
|
237 |
|
238 |
# Resolve the database path
|
239 |
db_path = Path(database_path).resolve()
|
@@ -262,12 +308,20 @@ def migrate(database_path, dry_run, backup):
|
|
262 |
click.echo(" • user_agent (VARCHAR(500))")
|
263 |
click.echo(" • generation_date (DATETIME)")
|
264 |
click.echo(" • cache_hit (BOOLEAN)")
|
|
|
|
|
|
|
265 |
click.echo("\nThe following columns would be added to the 'user' table:")
|
266 |
click.echo(" • hf_account_created (DATETIME)")
|
|
|
267 |
click.echo("\nThe following security tables would be created:")
|
268 |
click.echo(" • coordinated_voting_campaign - Track detected voting campaigns")
|
269 |
click.echo(" • campaign_participant - Track users involved in campaigns")
|
270 |
click.echo(" • user_timeout - Manage user timeouts/bans")
|
|
|
|
|
|
|
|
|
271 |
click.echo("\nRun without --dry-run to apply changes.")
|
272 |
return
|
273 |
|
|
|
103 |
else:
|
104 |
click.echo("⏭️ Table 'user_timeout' already exists, skipping")
|
105 |
|
106 |
+
# Create consumed_sentence table
|
107 |
+
if not check_table_exists(cursor, "consumed_sentence"):
|
108 |
+
cursor.execute("""
|
109 |
+
CREATE TABLE consumed_sentence (
|
110 |
+
id INTEGER PRIMARY KEY,
|
111 |
+
sentence_hash VARCHAR(64) UNIQUE NOT NULL,
|
112 |
+
sentence_text TEXT NOT NULL,
|
113 |
+
consumed_at DATETIME DEFAULT CURRENT_TIMESTAMP,
|
114 |
+
session_id VARCHAR(100),
|
115 |
+
usage_type VARCHAR(20) NOT NULL
|
116 |
+
)
|
117 |
+
""")
|
118 |
+
# Create index on sentence_hash for performance
|
119 |
+
cursor.execute("CREATE INDEX IF NOT EXISTS ix_consumed_sentence_sentence_hash ON consumed_sentence (sentence_hash)")
|
120 |
+
tables_created.append("consumed_sentence")
|
121 |
+
click.echo("✅ Created table 'consumed_sentence' with index")
|
122 |
+
else:
|
123 |
+
click.echo("⏭️ Table 'consumed_sentence' already exists, skipping")
|
124 |
+
|
125 |
return tables_created
|
126 |
|
127 |
|
|
|
148 |
("ip_address_partial", "VARCHAR(20)"),
|
149 |
("user_agent", "VARCHAR(500)"),
|
150 |
("generation_date", "DATETIME"),
|
151 |
+
("cache_hit", "BOOLEAN"),
|
152 |
+
("sentence_hash", "VARCHAR(64)"),
|
153 |
+
("sentence_origin", "VARCHAR(20)"),
|
154 |
+
("counts_for_public_leaderboard", "BOOLEAN DEFAULT 1")
|
155 |
]
|
156 |
|
157 |
# Define the columns to add to user table
|
158 |
user_columns_to_add = [
|
159 |
+
("hf_account_created", "DATETIME"),
|
160 |
+
("show_in_leaderboard", "BOOLEAN DEFAULT 1")
|
161 |
]
|
162 |
|
163 |
added_columns = []
|
|
|
199 |
click.echo("🔒 Creating security and timeout management tables...")
|
200 |
tables_created = create_timeout_and_campaign_tables(cursor)
|
201 |
|
202 |
+
# Create indexes for new columns
|
203 |
+
click.echo("📊 Creating indexes for performance...")
|
204 |
+
try:
|
205 |
+
# Index on vote.sentence_hash for origin tracking queries
|
206 |
+
cursor.execute("CREATE INDEX IF NOT EXISTS ix_vote_sentence_hash ON vote (sentence_hash)")
|
207 |
+
click.echo("✅ Created index on vote.sentence_hash")
|
208 |
+
except sqlite3.Error as e:
|
209 |
+
click.echo(f"⚠️ Note: Could not create vote.sentence_hash index: {e}")
|
210 |
+
|
211 |
# Commit the changes
|
212 |
conn.commit()
|
213 |
conn.close()
|
|
|
238 |
click.echo("\n🚨 New Security Features Enabled:")
|
239 |
click.echo(" • Automatic coordinated voting campaign detection")
|
240 |
click.echo(" • User timeout management")
|
241 |
+
click.echo(" • Sentence consumption tracking (no reuse)")
|
242 |
+
click.echo(" • Vote origin tracking (dataset vs custom)")
|
243 |
+
click.echo(" • Public leaderboard integrity protection")
|
244 |
click.echo(" • Admin panels for security monitoring")
|
245 |
click.echo("\nNew admin panel sections:")
|
246 |
click.echo(" • /admin/timeouts - Manage user timeouts")
|
247 |
click.echo(" • /admin/campaigns - View coordinated voting campaigns")
|
248 |
+
click.echo("\nLeaderboard Changes:")
|
249 |
+
click.echo(" • Public leaderboard: Only unconsumed dataset sentences count")
|
250 |
+
click.echo(" • Personal leaderboard: All votes (dataset + custom) included")
|
251 |
+
click.echo(" • Each sentence can only be used once for public rankings")
|
252 |
|
253 |
return True
|
254 |
|
|
|
268 |
"""
|
269 |
Add analytics columns and security tables to the TTS Arena database.
|
270 |
|
271 |
+
This migration adds:
|
272 |
+
- Vote analytics (session duration, IP, user agent, etc.)
|
273 |
+
- Sentence origin tracking (dataset vs custom)
|
274 |
+
- Sentence consumption tracking (prevent reuse)
|
275 |
+
- Security features (coordinated voting detection, user timeouts)
|
276 |
+
- Leaderboard integrity protection
|
277 |
+
|
278 |
DATABASE_PATH: Path to the SQLite database file (e.g., instance/tts_arena.db)
|
279 |
"""
|
280 |
click.echo("🚀 TTS Arena Migration Tool")
|
281 |
+
click.echo("Analytics + Security + Vote Origin Tracking")
|
282 |
+
click.echo("=" * 50)
|
283 |
|
284 |
# Resolve the database path
|
285 |
db_path = Path(database_path).resolve()
|
|
|
308 |
click.echo(" • user_agent (VARCHAR(500))")
|
309 |
click.echo(" • generation_date (DATETIME)")
|
310 |
click.echo(" • cache_hit (BOOLEAN)")
|
311 |
+
click.echo(" • sentence_hash (VARCHAR(64))")
|
312 |
+
click.echo(" • sentence_origin (VARCHAR(20))")
|
313 |
+
click.echo(" • counts_for_public_leaderboard (BOOLEAN DEFAULT 1)")
|
314 |
click.echo("\nThe following columns would be added to the 'user' table:")
|
315 |
click.echo(" • hf_account_created (DATETIME)")
|
316 |
+
click.echo(" • show_in_leaderboard (BOOLEAN DEFAULT 1)")
|
317 |
click.echo("\nThe following security tables would be created:")
|
318 |
click.echo(" • coordinated_voting_campaign - Track detected voting campaigns")
|
319 |
click.echo(" • campaign_participant - Track users involved in campaigns")
|
320 |
click.echo(" • user_timeout - Manage user timeouts/bans")
|
321 |
+
click.echo(" • consumed_sentence - Track sentence usage for security")
|
322 |
+
click.echo("\nIndexes would be created:")
|
323 |
+
click.echo(" • ix_vote_sentence_hash - For vote origin tracking")
|
324 |
+
click.echo(" • ix_consumed_sentence_sentence_hash - For sentence consumption queries")
|
325 |
click.echo("\nRun without --dry-run to apply changes.")
|
326 |
return
|
327 |
|
migrate_consumed_sentences.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Migration script to add ConsumedSentence table for tracking used sentences.
|
4 |
+
Run this script once to update existing databases.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
from flask import Flask
|
10 |
+
from models import db, ConsumedSentence
|
11 |
+
|
12 |
+
def create_app():
|
13 |
+
app = Flask(__name__)
|
14 |
+
app.config["SQLALCHEMY_DATABASE_URI"] = os.getenv(
|
15 |
+
"DATABASE_URI", "sqlite:///tts_arena.db"
|
16 |
+
)
|
17 |
+
app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False
|
18 |
+
|
19 |
+
db.init_app(app)
|
20 |
+
return app
|
21 |
+
|
22 |
+
def migrate():
|
23 |
+
app = create_app()
|
24 |
+
|
25 |
+
with app.app_context():
|
26 |
+
try:
|
27 |
+
# Create the ConsumedSentence table
|
28 |
+
db.create_all()
|
29 |
+
print("✅ Successfully created ConsumedSentence table")
|
30 |
+
|
31 |
+
# Check if table was created
|
32 |
+
inspector = db.inspect(db.engine)
|
33 |
+
tables = inspector.get_table_names()
|
34 |
+
|
35 |
+
if 'consumed_sentence' in tables:
|
36 |
+
print("✅ ConsumedSentence table confirmed in database")
|
37 |
+
else:
|
38 |
+
print("❌ ConsumedSentence table not found after creation")
|
39 |
+
|
40 |
+
except Exception as e:
|
41 |
+
print(f"❌ Error during migration: {e}")
|
42 |
+
return False
|
43 |
+
|
44 |
+
return True
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
print("Running ConsumedSentence table migration...")
|
48 |
+
if migrate():
|
49 |
+
print("Migration completed successfully!")
|
50 |
+
else:
|
51 |
+
print("Migration failed!")
|
52 |
+
sys.exit(1)
|
models.py
CHANGED
@@ -4,6 +4,7 @@ from datetime import datetime, timedelta
|
|
4 |
import math
|
5 |
from sqlalchemy import func, text
|
6 |
import logging
|
|
|
7 |
|
8 |
db = SQLAlchemy()
|
9 |
|
@@ -72,6 +73,11 @@ class Vote(db.Model):
|
|
72 |
user_agent = db.Column(db.String(500), nullable=True) # Browser/device info
|
73 |
generation_date = db.Column(db.DateTime, nullable=True) # When audio was generated
|
74 |
cache_hit = db.Column(db.Boolean, nullable=True) # Whether generation was from cache
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
chosen = db.relationship(
|
77 |
"Model",
|
@@ -174,6 +180,19 @@ class UserTimeout(db.Model):
|
|
174 |
return f"<UserTimeout {self.user_id}: {self.timeout_type} until {self.expires_at}>"
|
175 |
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
def calculate_elo_change(winner_elo, loser_elo, k_factor=32):
|
178 |
"""Calculate Elo rating changes for a match."""
|
179 |
expected_winner = 1 / (1 + math.pow(10, (loser_elo - winner_elo) / 400))
|
@@ -214,8 +233,23 @@ def anonymize_ip_address(ip_address):
|
|
214 |
|
215 |
def record_vote(user_id, text, chosen_model_id, rejected_model_id, model_type,
|
216 |
session_duration=None, ip_address=None, user_agent=None,
|
217 |
-
generation_date=None, cache_hit=None):
|
218 |
"""Record a vote and update Elo ratings."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
# Create the vote
|
220 |
vote = Vote(
|
221 |
user_id=user_id, # Required - user must be logged in to vote
|
@@ -228,6 +262,9 @@ def record_vote(user_id, text, chosen_model_id, rejected_model_id, model_type,
|
|
228 |
user_agent=user_agent[:500] if user_agent else None, # Truncate if too long
|
229 |
generation_date=generation_date,
|
230 |
cache_hit=cache_hit,
|
|
|
|
|
|
|
231 |
)
|
232 |
db.session.add(vote)
|
233 |
db.session.flush() # Get the vote ID without committing
|
@@ -244,18 +281,24 @@ def record_vote(user_id, text, chosen_model_id, rejected_model_id, model_type,
|
|
244 |
db.session.rollback()
|
245 |
return None, "One or both models not found for the specified model type"
|
246 |
|
247 |
-
#
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
259 |
|
260 |
# Record Elo history
|
261 |
chosen_history = EloHistory(
|
@@ -281,6 +324,7 @@ def record_vote(user_id, text, chosen_model_id, rejected_model_id, model_type,
|
|
281 |
def get_leaderboard_data(model_type):
|
282 |
"""
|
283 |
Get leaderboard data for the specified model type.
|
|
|
284 |
|
285 |
Args:
|
286 |
model_type (str): The model type ('tts' or 'conversational')
|
@@ -291,6 +335,7 @@ def get_leaderboard_data(model_type):
|
|
291 |
query = Model.query.filter_by(model_type=model_type)
|
292 |
|
293 |
# Get models with >1k votes ordered by ELO score
|
|
|
294 |
models = query.filter(Model.match_count > 1000).order_by(Model.current_elo.desc()).all()
|
295 |
|
296 |
result = []
|
@@ -325,6 +370,7 @@ def get_leaderboard_data(model_type):
|
|
325 |
def get_user_leaderboard(user_id, model_type):
|
326 |
"""
|
327 |
Get personalized leaderboard data for a specific user.
|
|
|
328 |
|
329 |
Args:
|
330 |
user_id (int): The user ID
|
@@ -336,7 +382,7 @@ def get_user_leaderboard(user_id, model_type):
|
|
336 |
# Get all models of the specified type
|
337 |
models = Model.query.filter_by(model_type=model_type).all()
|
338 |
|
339 |
-
# Get user's votes
|
340 |
user_votes = Vote.query.filter_by(user_id=user_id, model_type=model_type).all()
|
341 |
|
342 |
# Calculate win counts and match counts for each model based on user's votes
|
@@ -415,17 +461,19 @@ def get_historical_leaderboard_data(model_type, target_date=None):
|
|
415 |
if not elo_entry:
|
416 |
continue
|
417 |
|
418 |
-
# Count wins and matches up to the target date
|
419 |
match_count = Vote.query.filter(
|
420 |
db.or_(Vote.model_chosen == model.id, Vote.model_rejected == model.id),
|
421 |
Vote.model_type == model_type,
|
422 |
Vote.vote_date <= target_date,
|
|
|
423 |
).count()
|
424 |
|
425 |
win_count = Vote.query.filter(
|
426 |
Vote.model_chosen == model.id,
|
427 |
Vote.model_type == model_type,
|
428 |
Vote.vote_date <= target_date,
|
|
|
429 |
).count()
|
430 |
|
431 |
# Calculate win rate
|
@@ -823,3 +871,69 @@ def resolve_campaign(campaign_id, resolved_by, status, admin_notes=None):
|
|
823 |
|
824 |
db.session.commit()
|
825 |
return True, "Campaign resolved successfully"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import math
|
5 |
from sqlalchemy import func, text
|
6 |
import logging
|
7 |
+
import hashlib
|
8 |
|
9 |
db = SQLAlchemy()
|
10 |
|
|
|
73 |
user_agent = db.Column(db.String(500), nullable=True) # Browser/device info
|
74 |
generation_date = db.Column(db.DateTime, nullable=True) # When audio was generated
|
75 |
cache_hit = db.Column(db.Boolean, nullable=True) # Whether generation was from cache
|
76 |
+
|
77 |
+
# Sentence origin tracking
|
78 |
+
sentence_hash = db.Column(db.String(64), nullable=True, index=True) # SHA-256 hash of the sentence
|
79 |
+
sentence_origin = db.Column(db.String(20), nullable=True) # 'dataset', 'custom', 'unknown'
|
80 |
+
counts_for_public_leaderboard = db.Column(db.Boolean, default=True) # Whether this vote counts for public leaderboard
|
81 |
|
82 |
chosen = db.relationship(
|
83 |
"Model",
|
|
|
180 |
return f"<UserTimeout {self.user_id}: {self.timeout_type} until {self.expires_at}>"
|
181 |
|
182 |
|
183 |
+
class ConsumedSentence(db.Model):
|
184 |
+
"""Track sentences that have been used to ensure each sentence is only used once"""
|
185 |
+
id = db.Column(db.Integer, primary_key=True)
|
186 |
+
sentence_hash = db.Column(db.String(64), unique=True, nullable=False, index=True) # SHA-256 hash
|
187 |
+
sentence_text = db.Column(db.Text, nullable=False) # Store original text for debugging/admin purposes
|
188 |
+
consumed_at = db.Column(db.DateTime, default=datetime.utcnow)
|
189 |
+
session_id = db.Column(db.String(100), nullable=True) # Track which session consumed it
|
190 |
+
usage_type = db.Column(db.String(20), nullable=False) # 'cache', 'direct', 'random'
|
191 |
+
|
192 |
+
def __repr__(self):
|
193 |
+
return f"<ConsumedSentence {self.sentence_hash[:8]}...({self.usage_type})>"
|
194 |
+
|
195 |
+
|
196 |
def calculate_elo_change(winner_elo, loser_elo, k_factor=32):
|
197 |
"""Calculate Elo rating changes for a match."""
|
198 |
expected_winner = 1 / (1 + math.pow(10, (loser_elo - winner_elo) / 400))
|
|
|
233 |
|
234 |
def record_vote(user_id, text, chosen_model_id, rejected_model_id, model_type,
|
235 |
session_duration=None, ip_address=None, user_agent=None,
|
236 |
+
generation_date=None, cache_hit=None, all_dataset_sentences=None):
|
237 |
"""Record a vote and update Elo ratings."""
|
238 |
+
|
239 |
+
# Determine sentence origin and whether it should count for public leaderboard
|
240 |
+
sentence_hash = hash_sentence(text)
|
241 |
+
sentence_origin = 'unknown'
|
242 |
+
counts_for_public = True
|
243 |
+
|
244 |
+
if all_dataset_sentences and text in all_dataset_sentences:
|
245 |
+
sentence_origin = 'dataset'
|
246 |
+
# Only count for public leaderboard if sentence was unconsumed when used
|
247 |
+
# Check if it was consumed BEFORE this vote (don't consume yet)
|
248 |
+
counts_for_public = not is_sentence_consumed(text)
|
249 |
+
else:
|
250 |
+
sentence_origin = 'custom'
|
251 |
+
counts_for_public = False # Custom sentences never count for public leaderboard
|
252 |
+
|
253 |
# Create the vote
|
254 |
vote = Vote(
|
255 |
user_id=user_id, # Required - user must be logged in to vote
|
|
|
262 |
user_agent=user_agent[:500] if user_agent else None, # Truncate if too long
|
263 |
generation_date=generation_date,
|
264 |
cache_hit=cache_hit,
|
265 |
+
sentence_hash=sentence_hash,
|
266 |
+
sentence_origin=sentence_origin,
|
267 |
+
counts_for_public_leaderboard=counts_for_public,
|
268 |
)
|
269 |
db.session.add(vote)
|
270 |
db.session.flush() # Get the vote ID without committing
|
|
|
281 |
db.session.rollback()
|
282 |
return None, "One or both models not found for the specified model type"
|
283 |
|
284 |
+
# Only update Elo ratings and public stats if this vote counts for public leaderboard
|
285 |
+
if counts_for_public:
|
286 |
+
# Calculate new Elo ratings
|
287 |
+
new_chosen_elo, new_rejected_elo = calculate_elo_change(
|
288 |
+
chosen_model.current_elo, rejected_model.current_elo
|
289 |
+
)
|
290 |
|
291 |
+
# Update model stats
|
292 |
+
chosen_model.current_elo = new_chosen_elo
|
293 |
+
chosen_model.win_count += 1
|
294 |
+
chosen_model.match_count += 1
|
295 |
|
296 |
+
rejected_model.current_elo = new_rejected_elo
|
297 |
+
rejected_model.match_count += 1
|
298 |
+
else:
|
299 |
+
# For votes that don't count for public leaderboard, keep current Elo
|
300 |
+
new_chosen_elo = chosen_model.current_elo
|
301 |
+
new_rejected_elo = rejected_model.current_elo
|
302 |
|
303 |
# Record Elo history
|
304 |
chosen_history = EloHistory(
|
|
|
324 |
def get_leaderboard_data(model_type):
|
325 |
"""
|
326 |
Get leaderboard data for the specified model type.
|
327 |
+
Only includes votes that count for the public leaderboard.
|
328 |
|
329 |
Args:
|
330 |
model_type (str): The model type ('tts' or 'conversational')
|
|
|
335 |
query = Model.query.filter_by(model_type=model_type)
|
336 |
|
337 |
# Get models with >1k votes ordered by ELO score
|
338 |
+
# Note: Model.match_count now only includes votes that count for public leaderboard
|
339 |
models = query.filter(Model.match_count > 1000).order_by(Model.current_elo.desc()).all()
|
340 |
|
341 |
result = []
|
|
|
370 |
def get_user_leaderboard(user_id, model_type):
|
371 |
"""
|
372 |
Get personalized leaderboard data for a specific user.
|
373 |
+
Includes ALL votes (both dataset and custom sentences).
|
374 |
|
375 |
Args:
|
376 |
user_id (int): The user ID
|
|
|
382 |
# Get all models of the specified type
|
383 |
models = Model.query.filter_by(model_type=model_type).all()
|
384 |
|
385 |
+
# Get user's votes (includes both public and custom sentence votes)
|
386 |
user_votes = Vote.query.filter_by(user_id=user_id, model_type=model_type).all()
|
387 |
|
388 |
# Calculate win counts and match counts for each model based on user's votes
|
|
|
461 |
if not elo_entry:
|
462 |
continue
|
463 |
|
464 |
+
# Count wins and matches up to the target date (only public leaderboard votes)
|
465 |
match_count = Vote.query.filter(
|
466 |
db.or_(Vote.model_chosen == model.id, Vote.model_rejected == model.id),
|
467 |
Vote.model_type == model_type,
|
468 |
Vote.vote_date <= target_date,
|
469 |
+
Vote.counts_for_public_leaderboard == True,
|
470 |
).count()
|
471 |
|
472 |
win_count = Vote.query.filter(
|
473 |
Vote.model_chosen == model.id,
|
474 |
Vote.model_type == model_type,
|
475 |
Vote.vote_date <= target_date,
|
476 |
+
Vote.counts_for_public_leaderboard == True,
|
477 |
).count()
|
478 |
|
479 |
# Calculate win rate
|
|
|
871 |
|
872 |
db.session.commit()
|
873 |
return True, "Campaign resolved successfully"
|
874 |
+
|
875 |
+
|
876 |
+
def hash_sentence(sentence_text):
|
877 |
+
"""Generate a SHA-256 hash for a sentence"""
|
878 |
+
return hashlib.sha256(sentence_text.strip().encode('utf-8')).hexdigest()
|
879 |
+
|
880 |
+
|
881 |
+
def is_sentence_consumed(sentence_text):
|
882 |
+
"""Check if a sentence has already been consumed"""
|
883 |
+
sentence_hash = hash_sentence(sentence_text)
|
884 |
+
return ConsumedSentence.query.filter_by(sentence_hash=sentence_hash).first() is not None
|
885 |
+
|
886 |
+
|
887 |
+
def mark_sentence_consumed(sentence_text, session_id=None, usage_type='direct'):
|
888 |
+
"""Mark a sentence as consumed"""
|
889 |
+
sentence_hash = hash_sentence(sentence_text)
|
890 |
+
|
891 |
+
# Check if already consumed
|
892 |
+
existing = ConsumedSentence.query.filter_by(sentence_hash=sentence_hash).first()
|
893 |
+
if existing:
|
894 |
+
return existing # Already consumed
|
895 |
+
|
896 |
+
consumed_sentence = ConsumedSentence(
|
897 |
+
sentence_hash=sentence_hash,
|
898 |
+
sentence_text=sentence_text,
|
899 |
+
session_id=session_id,
|
900 |
+
usage_type=usage_type
|
901 |
+
)
|
902 |
+
|
903 |
+
db.session.add(consumed_sentence)
|
904 |
+
db.session.commit()
|
905 |
+
return consumed_sentence
|
906 |
+
|
907 |
+
|
908 |
+
def get_unconsumed_sentences(sentence_pool):
|
909 |
+
"""Filter a list of sentences to only include unconsumed ones"""
|
910 |
+
if not sentence_pool:
|
911 |
+
return []
|
912 |
+
|
913 |
+
# Get all consumed sentence hashes
|
914 |
+
consumed_hashes = set(
|
915 |
+
row[0] for row in db.session.query(ConsumedSentence.sentence_hash).all()
|
916 |
+
)
|
917 |
+
|
918 |
+
# Filter out consumed sentences
|
919 |
+
unconsumed = []
|
920 |
+
for sentence in sentence_pool:
|
921 |
+
if hash_sentence(sentence) not in consumed_hashes:
|
922 |
+
unconsumed.append(sentence)
|
923 |
+
|
924 |
+
return unconsumed
|
925 |
+
|
926 |
+
|
927 |
+
def get_consumed_sentences_count():
|
928 |
+
"""Get the total count of consumed sentences"""
|
929 |
+
return ConsumedSentence.query.count()
|
930 |
+
|
931 |
+
|
932 |
+
def get_random_unconsumed_sentence(sentence_pool):
|
933 |
+
"""Get a random unconsumed sentence from the pool"""
|
934 |
+
unconsumed = get_unconsumed_sentences(sentence_pool)
|
935 |
+
if not unconsumed:
|
936 |
+
return None
|
937 |
+
|
938 |
+
import random
|
939 |
+
return random.choice(unconsumed)
|
requirements.txt
CHANGED
@@ -11,4 +11,5 @@ flask-migrate
|
|
11 |
gunicorn
|
12 |
waitress
|
13 |
fal-client
|
14 |
-
git+https://github.com/playht/pyht
|
|
|
|
11 |
gunicorn
|
12 |
waitress
|
13 |
fal-client
|
14 |
+
git+https://github.com/playht/pyht
|
15 |
+
datasets
|
templates/arena.html
CHANGED
@@ -1467,19 +1467,14 @@
|
|
1467 |
function handleRandom() {
|
1468 |
let selectedText = '';
|
1469 |
if (cachedSentences && cachedSentences.length > 0) {
|
1470 |
-
// Select a random text from the
|
1471 |
selectedText = cachedSentences[Math.floor(Math.random() * cachedSentences.length)];
|
1472 |
-
console.log("Using random sentence from
|
1473 |
} else {
|
1474 |
-
//
|
1475 |
-
console.
|
1476 |
-
|
1477 |
-
|
1478 |
-
} else {
|
1479 |
-
// If fallback list is also empty, do nothing. Log an error.
|
1480 |
-
console.error("Both cached sentences and fallback sentences are unavailable.");
|
1481 |
-
return;
|
1482 |
-
}
|
1483 |
}
|
1484 |
textInput.value = selectedText;
|
1485 |
textInput.focus();
|
|
|
1467 |
function handleRandom() {
|
1468 |
let selectedText = '';
|
1469 |
if (cachedSentences && cachedSentences.length > 0) {
|
1470 |
+
// Select a random text from the unconsumed sentences
|
1471 |
selectedText = cachedSentences[Math.floor(Math.random() * cachedSentences.length)];
|
1472 |
+
console.log("Using random sentence from unconsumed sentences.");
|
1473 |
} else {
|
1474 |
+
// No fallback to consumed sentences for security reasons
|
1475 |
+
console.error("No unconsumed sentences available. All sentences may have been used.");
|
1476 |
+
openToast("No unused sentences available. All sentences from the dataset may have been consumed.", "error");
|
1477 |
+
return;
|
|
|
|
|
|
|
|
|
|
|
1478 |
}
|
1479 |
textInput.value = selectedText;
|
1480 |
textInput.focus();
|
tts.py
CHANGED
@@ -165,7 +165,6 @@ def predict_dia(script):
|
|
165 |
else:
|
166 |
# If it's already a string, use as is
|
167 |
text = script
|
168 |
-
print(text)
|
169 |
# Make a POST request to initiate the dialogue generation
|
170 |
headers = {
|
171 |
# "Content-Type": "application/json",
|
@@ -219,7 +218,6 @@ def predict_tts(text, model):
|
|
219 |
}
|
220 |
),
|
221 |
)
|
222 |
-
|
223 |
response_json = result.json()
|
224 |
|
225 |
audio_data = response_json["audio_data"] # base64 encoded audio data
|
|
|
165 |
else:
|
166 |
# If it's already a string, use as is
|
167 |
text = script
|
|
|
168 |
# Make a POST request to initiate the dialogue generation
|
169 |
headers = {
|
170 |
# "Content-Type": "application/json",
|
|
|
218 |
}
|
219 |
),
|
220 |
)
|
|
|
221 |
response_json = result.json()
|
222 |
|
223 |
audio_data = response_json["audio_data"] # base64 encoded audio data
|