Spaces:
Running
Running
import os | |
import random | |
import gradio as gr | |
from groq import Groq | |
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip | |
import numpy as np | |
from PIL import Image | |
# Initialize client with API key | |
client = Groq( | |
api_key=os.getenv("Groq_Api_Key") | |
) | |
if client.api_key is None: | |
raise EnvironmentError("Groq_Api_Key environment variable is not set.") | |
# Helper to create messages from history | |
def create_history_messages(history): | |
history_messages = [{"role": "user", "content": m[0]} for m in history] | |
history_messages.extend([{"role": "assistant", "content": m[1]} for m in history]) | |
return history_messages | |
# Generate response function | |
def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed): | |
messages = create_history_messages(history) | |
messages.append({"role": "user", "content": prompt}) | |
if seed == 0: | |
seed = random.randint(1, 100000) | |
stream = client.chat.completions.create( | |
messages=messages, | |
model=model, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
top_p=top_p, | |
seed=seed, | |
stop=None, | |
stream=True, | |
) | |
response = "" | |
for chunk in stream: | |
delta_content = chunk.choices[0].delta.content | |
if delta_content is not None: | |
response += delta_content | |
yield response | |
return response | |
# Process video function | |
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip | |
from PIL import Image | |
# Adjusting MoviePy's resize function to use Image.LANCZOS directly | |
def process_video(text): | |
video_folder = "videos" | |
video_files = [os.path.join(video_folder, f) for f in os.listdir(video_folder) if f.endswith(('mp4', 'mov', 'avi', 'mkv'))] | |
if not video_files: | |
raise FileNotFoundError("No video files found in the specified directory.") | |
selected_video = random.choice(video_files) | |
video = VideoFileClip(selected_video) | |
start_time = random.uniform(0, max(0, video.duration - 60)) | |
video = video.subclip(start_time, min(start_time + 60, video.duration)) | |
# Manually resize using PIL to avoid the issue | |
def resize_image(image, new_size): | |
pil_image = Image.fromarray(image) | |
resized_pil = pil_image.resize(new_size[::-1], Image.LANCZOS) | |
return np.array(resized_pil) | |
new_size = (1080, int(video.h * (1080 / video.w))) | |
video = video.fl_image(lambda image: resize_image(image, new_size)) | |
video = video.crop(x1=video.w // 2 - 540, x2=video.w // 2 + 540) | |
text_lines = text.split() | |
text = "\n".join([" ".join(text_lines[i:i+8]) for i in range(0, len(text_lines), 8)]) | |
text_clip = TextClip(text, fontsize=70, color='white', size=video.size, method='caption') | |
text_clip = text_clip.set_position('center').set_duration(video.duration) | |
final = CompositeVideoClip([video, text_clip]) | |
output_path = "output.mp4" | |
final.write_videofile(output_path, codec="libx264") | |
return output_path | |
# Additional inputs for the chat interface | |
additional_inputs = [ | |
gr.Dropdown(choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"], value="llama3-70b-8192", label="Model"), | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."), | |
gr.Slider(minimum=1, maximum=32192, step=1, value=4096, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b, llama 7b & 70b, 32k for mixtral 8x7b."), | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."), | |
gr.Number(precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random") | |
] | |
# Gradio interface with blocks and tabs | |
# Chat Interface | |
def create_chat_interface(): | |
return gr.ChatInterface( | |
fn=generate_response, | |
chatbot=gr.Chatbot( | |
show_label=False, | |
show_share_button=False, | |
show_copy_button=True, | |
likeable=True, | |
layout="panel" | |
), | |
additional_inputs=additional_inputs, | |
title="YTSHorts Maker", | |
description="Powered by GROQ, MoviePy, and other tools." | |
) | |
# Main app definition | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="red", secondary_hue="pink")) as demo: | |
with gr.Tabs(): | |
# Chat Ta | |
with gr.TabItem("Video Processing"): | |
text_input = gr.Textbox(lines=5, label="Text (8 words max per line)") | |
process_button = gr.Button("Process Video") | |
video_output = gr.Video(label="Processed Video") | |
process_button.click( | |
fn=process_video, | |
inputs=text_input, | |
outputs=video_output, | |
) | |
# Launch the Gradio interface | |
if __name__ == "__main__": | |
demo.launch() |