Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import uuid | |
| from omegaconf import OmegaConf | |
| import spaces | |
| import random | |
| import imageio | |
| import torch | |
| import torchvision | |
| import gradio as gr | |
| import numpy as np | |
| from gradio.components import Textbox, Video | |
| from huggingface_hub import hf_hub_download | |
| from utils.common_utils import load_model_checkpoint | |
| from utils.utils import instantiate_from_config | |
| from scheduler.t2v_turbo_scheduler import T2VTurboScheduler | |
| from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline | |
| DESCRIPTION = """# T2V-Turbo π | |
| Our model is distilled from [VideoCrafter2](https://ailab-cvc.github.io/videocrafter2/). | |
| T2V-Turbo learns a LoRA on top of the base model by aligning to the reward feedback from [HPSv2.1](https://github.com/tgxs002/HPSv2/tree/master) and [InternVid2 Stage 2 Model](https://huggingface.co/OpenGVLab/InternVideo2-Stage2_1B-224p-f4). | |
| T2V-Turbo-v2 optimizes the training techniques by finetuning the full base model and further aligns to [CLIPScore](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) | |
| T2V-Turbo trains on pure WebVid-10M data, whereas T2V-Turbo-v2 carufully optimizes different learning objectives with a mixutre of VidGen-1M and WebVid-10M data. | |
| Moreover, T2V-Turbo-v2 supports to distill motion priors from the training videos. | |
| [Project page for T2V-Turbo](https://t2v-turbo.github.io) π₯³ | |
| [Project page for T2V-Turbo-v2](https://t2v-turbo-v2.github.io) π€ | |
| """ | |
| if torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CUDA π</p>" | |
| elif hasattr(torch, "xpu") and torch.xpu.is_available(): | |
| DESCRIPTION += "\n<p>Running on XPU π€</p>" | |
| else: | |
| DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def save_video(video_array, video_save_path, fps: int = 16): | |
| video = video_array.detach().cpu() | |
| video = torch.clamp(video.float(), -1.0, 1.0) | |
| video = video.permute(1, 0, 2, 3) # t,c,h,w | |
| video = (video + 1.0) / 2.0 | |
| video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
| torchvision.io.write_video( | |
| video_save_path, video, fps=fps, video_codec="h264", options={"crf": "10"} | |
| ) | |
| example_txt = [ | |
| "An astronaut riding a horse.", | |
| "Darth vader surfing in waves.", | |
| "light wind, feathers moving, she moves her gaze, 4k", | |
| "a girl floating underwater.", | |
| "Pikachu snowboarding.", | |
| "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", | |
| "A musician strums his guitar, serenading the moonlit night.", | |
| ] | |
| examples = [[i, 7.5, 0.5, 16, 16, 0, True, "bf16"] for i in example_txt] | |
| def generate( | |
| prompt: str, | |
| guidance_scale: float = 7.5, | |
| percentage: float = 0.5, | |
| num_inference_steps: int = 4, | |
| num_frames: int = 16, | |
| seed: int = 0, | |
| randomize_seed: bool = False, | |
| param_dtype="bf16", | |
| motion_gs: float = 0.05, | |
| fps: int = 8, | |
| ): | |
| seed = randomize_seed_fn(seed, randomize_seed) | |
| torch.manual_seed(seed) | |
| if param_dtype == "bf16": | |
| dtype = torch.bfloat16 | |
| unet.dtype = torch.bfloat16 | |
| elif param_dtype == "fp16": | |
| dtype = torch.float16 | |
| unet.dtype = torch.float16 | |
| elif param_dtype == "fp32": | |
| dtype = torch.float32 | |
| unet.dtype = torch.float32 | |
| else: | |
| raise ValueError(f"Unknown dtype: {param_dtype}") | |
| pipeline.unet.to(device, dtype) | |
| pipeline.text_encoder.to(device, dtype) | |
| pipeline.vae.to(device, dtype) | |
| pipeline.to(device, dtype) | |
| result = pipeline( | |
| prompt=prompt, | |
| frames=num_frames, | |
| fps=fps, | |
| guidance_scale=guidance_scale, | |
| motion_gs=motion_gs, | |
| use_motion_cond=True, | |
| percentage=percentage, | |
| num_inference_steps=num_inference_steps, | |
| lcm_origin_steps=200, | |
| num_videos_per_prompt=1, | |
| ) | |
| torch.cuda.empty_cache() | |
| tmp_save_path = "tmp.mp4" | |
| root_path = "./videos/" | |
| os.makedirs(root_path, exist_ok=True) | |
| video_save_path = os.path.join(root_path, tmp_save_path) | |
| save_video(result[0], video_save_path, fps=fps) | |
| display_model_info = f"Video size: {num_frames}x320x512, Sampling Step: {num_inference_steps}, Guidance Scale: {guidance_scale}" | |
| return video_save_path, prompt, display_model_info, seed | |
| block_css = """ | |
| #buttons button { | |
| min-width: min(120px,100%); | |
| } | |
| """ | |
| if __name__ == "__main__": | |
| device = torch.device("cuda:0") | |
| config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml") | |
| model_config = config.pop("model", OmegaConf.create()) | |
| pretrained_t2v = instantiate_from_config(model_config) | |
| pretrained_path = hf_hub_download("VideoCrafter/VideoCrafter2", filename="model.ckpt") | |
| pretrained_t2v = load_model_checkpoint(pretrained_t2v, pretrained_path) | |
| unet_config = model_config["params"]["unet_config"] | |
| unet_config["params"]["use_checkpoint"] = False | |
| unet_config["params"]["time_cond_proj_dim"] = 256 | |
| unet_config["params"]["motion_cond_proj_dim"] = 256 | |
| unet = instantiate_from_config(unet_config) | |
| unet_path = hf_hub_download(repo_id="jiachenli-ucsb/T2V-Turbo-v2", filename="unet_mg.pt") | |
| unet.load_state_dict(torch.load(unet_path, map_location=device)) | |
| unet.eval() | |
| pretrained_t2v.model.diffusion_model = unet | |
| scheduler = T2VTurboScheduler( | |
| linear_start=model_config["params"]["linear_start"], | |
| linear_end=model_config["params"]["linear_end"], | |
| ) | |
| pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config) | |
| pipeline.to(device) | |
| demo = gr.Interface( | |
| fn=generate, | |
| inputs=[ | |
| Textbox(label="", placeholder="Please enter your prompt. \n"), | |
| gr.Slider( | |
| label="Guidance scale", | |
| minimum=2, | |
| maximum=14, | |
| step=0.1, | |
| value=7.5, | |
| ), | |
| gr.Slider( | |
| label="Percentage of steps to apply motion guidance (v2 w/ MG only)", | |
| minimum=0.0, | |
| maximum=0.5, | |
| step=0.05, | |
| value=0.5, | |
| ), | |
| gr.Slider( | |
| label="Number of inference steps", | |
| minimum=4, | |
| maximum=50, | |
| step=1, | |
| value=16, | |
| ), | |
| gr.Slider( | |
| label="Number of Video Frames", | |
| minimum=16, | |
| maximum=48, | |
| step=8, | |
| value=16, | |
| ), | |
| gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| randomize=True, | |
| ), | |
| gr.Checkbox(label="Randomize seed", value=True), | |
| gr.Radio( | |
| ["bf16", "fp16", "fp32"], | |
| label="torch.dtype", | |
| value="bf16", | |
| interactive=True, | |
| info="Dtype for inference. Default is bf16.", | |
| ) | |
| ], | |
| outputs=[ | |
| gr.Video(label="Generated Video", width=512, height=320, interactive=False, autoplay=True), | |
| Textbox(label="input prompt"), | |
| Textbox(label="model info"), | |
| gr.Slider(label="seed"), | |
| ], | |
| description=DESCRIPTION, | |
| theme=gr.themes.Default(), | |
| css=block_css, | |
| examples=examples, | |
| cache_examples=False, | |
| concurrency_limit=10, | |
| ) | |
| demo.launch() | |