File size: 15,458 Bytes
bdfaf60 343668f bdfaf60 fd61c12 d6dd262 bdfaf60 d6dd262 bdfaf60 d6dd262 bdfaf60 d6dd262 25b71ab 7ec0376 d6dd262 fd61c12 bdfaf60 afc5a40 bdfaf60 f44c72f bdfaf60 f44c72f bdfaf60 f44c72f bdfaf60 f44c72f fd61c12 bdfaf60 c211f23 bdfaf60 c211f23 bdfaf60 c211f23 bdfaf60 c211f23 bdfaf60 c211f23 bdfaf60 c211f23 bdfaf60 c211f23 bdfaf60 c211f23 bdfaf60 c211f23 bdfaf60 d6dd262 fd61c12 d6dd262 bdfaf60 d6dd262 fd61c12 d6dd262 fd61c12 d6dd262 fd61c12 d6dd262 fd61c12 d6dd262 fd61c12 d6dd262 fd61c12 d6dd262 fd61c12 d6dd262 fc43d0c d6dd262 fc43d0c d6dd262 bdfaf60 d6dd262 25b71ab d6dd262 bdfaf60 d6dd262 0d7c1bb 2b2daba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import gradio as gr
import requests
import json
import os
import hashlib
import time
from PIL import Image
from pathlib import Path
from io import BytesIO
from groq import Groq
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
api_key_token = os.getenv('api_key_token', '')
groq_api_key = os.getenv('groq_api_key', '')
if not api_key_token or not groq_api_key:
raise ValueError("Please configure your API keys in .env")
# Khởi tạo client Groq (sửa lỗi proxies)
original_init = Groq.__init__
def patched_init(self, *args, **kwargs):
kwargs.pop("proxies", None) # Loại bỏ tham số proxies nếu có
original_init(self, *args, **kwargs)
Groq.__init__ = patched_init
client = Groq(api_key=groq_api_key)
# Cấu hình cơ bản
url_pre = "https://ap-east-1.tensorart.cloud/v1"
SAVE_DIR = "generated_images"
Path(SAVE_DIR).mkdir(exist_ok=True)
# Danh sách sản phẩm (copy từ mã gốc)
PRODUCT_GROUPS = {
"Standard": {
"C1012 Glacier White": "817687427545199895",
"C1026 Polar": "819910519797326073",
"C3269 Ash Grey": "821839484099264081",
"C3168 Silver Wave": "821849044696643212",
"C1005 Milky White": "821948258441171133",
},
"Deluxe": {
"C2103 Onyx Carrara": "827090618489513527",
"C2104 Massa": "822075428127644644",
"C3105 Casla Cloudy": "828912225788997963",
"C3146 Casla Nova": "828013009961087650",
"C2240 Marquin": "828085015087780649",
"C2262 Concrete (Honed)": "822211862058871636",
"C3311 Calacatta Sky": "829984593223502930",
"C3346 Massimo": "827938741386607132",
},
"Luxury": {
"C4143 Mario": "829984593223502930",
"C4145 Marina": "828132560375742058",
"C4202 Calacatta Gold": "828167757632695310",
"C1205 Casla Everest": "828296778450463190",
"C4211 Calacatta Supreme": "828436321937882328",
"C4204 Calacatta Classic": "828422973179466146",
"C5240 Spring": "is coming",
"C1102 Super White": "828545723344775887",
"C4246 Casla Mystery": "828544778451950698",
"C4345 Oro": "828891068780182635",
"C4346 Luxe": "829436426547535131",
"C4342 Casla Eternal": "829190256201829181",
"C4221 Athena": "829644354504131520",
"C4222 Lagoon": "is coming",
"C5225 Amber": "is coming",
},
"Super Luxury": {
"C4255 Calacatta Extra": "829659013227537217",
},
}
PRODUCT_IMAGE_MAP = {
"C1012 Glacier White": "product_images/C1012.jpg",
"C1026 Polar": "product_images/C1026.jpg",
"C3269 Ash Grey": "product_images/C3269.jpg",
"C3168 Silver Wave": "product_images/C3168.jpg",
"C1005 Milky White": "product_images/C1005.jpg",
"C2103 Onyx Carrara": "product_images/C2103.jpg",
"C2104 Massa": "product_images/C2104.jpg",
"C3105 Casla Cloudy": "product_images/C3105.jpg",
"C3146 Casla Nova": "product_images/C3146.jpg",
"C2240 Marquin": "product_images/C2240.jpg",
"C2262 Concrete (Honed)": "product_images/C2262.jpg",
"C3311 Calacatta Sky": "product_images/C3311.jpg",
"C3346 Massimo": "product_images/C3346.jpg",
"C4143 Mario": "product_images/C4143.jpg",
"C4145 Marina": "product_images/C4145.jpg",
"C4202 Calacatta Gold": "product_images/C4202.jpg",
"C1205 Casla Everest": "product_images/C1205.jpg",
"C4211 Calacatta Supreme": "product_images/C4211.jpg",
"C4204 Calacatta Classic": "product_images/C4204.jpg",
"C1102 Super White": "product_images/C1102.jpg",
"C4246 Casla Mystery": "product_images/C4246.jpg",
"C4345 Oro": "product_images/C4345.jpg",
"C4346 Luxe": "product_images/C4346.jpg",
"C4342 Casla Eternal": "product_images/C4342.jpg",
"C4221 Athena": "product_images/C4221.jpg",
"C4255 Calacatta Extra": "product_images/C4255.jpg",
}
# Hàm xử lý từ mã gốc
def rewrite_prompt_with_groq(vietnamese_prompt, product_codes):
prompt = f"{vietnamese_prompt}, featuring {' and '.join(product_codes)} quartz marble"
return prompt
def upload_image_to_tensorart(image_path):
try:
url = f"{url_pre}/resource/image"
payload = json.dumps({"expireSec": "7200"})
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json',
'Authorization': f'Bearer {api_key_token}'
}
if not os.path.exists(image_path):
return None
response = requests.post(url, headers=headers, data=payload, timeout=30)
response.raise_for_status()
resource_response = response.json()
put_url = resource_response.get('putUrl')
headers_put = resource_response.get('headers', {'Content-Type': 'image/jpeg'})
if not put_url:
return None
with open(image_path, 'rb') as img_file:
upload_response = requests.put(put_url, data=img_file, headers=headers_put)
if upload_response.status_code not in [200, 203]:
raise Exception(f"PUT failed with status {upload_response.status_code}")
resource_id = resource_response.get('resourceId')
if not resource_id:
return None
time.sleep(10) # Đợi đồng bộ tài nguyên
return resource_id
except Exception as e:
print(f"Upload error: {str(e)}")
return None
def txt2img(prompt, width, height, product_codes):
model_id = "779398605850080514"
vae_id = "ae.sft"
txt2img_data = {
"request_id": hashlib.md5(str(int(time.time())).encode()).hexdigest(),
"stages": [
{"type": "INPUT_INITIALIZE", "inputInitialize": {"seed": -1, "count": 1}},
{
"type": "DIFFUSION",
"diffusion": {
"width": width,
"height": height,
"prompts": [{"text": prompt}],
"negativePrompts": [{"text": " "}],
"sdModel": model_id,
"sdVae": vae_id,
"sampler": "Euler a",
"steps": 30,
"cfgScale": 8,
"clipSkip": 1,
"etaNoiseSeedDelta": 31337,
}
}
]
}
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json',
'Authorization': f'Bearer {api_key_token}'
}
response = requests.post(f"{url_pre}/jobs", json=txt2img_data, headers=headers)
if response.status_code != 200:
return f"Error: {response.status_code} - {response.text}"
response_data = response.json()
job_id = response_data['job']['id']
start_time = time.time()
timeout = 300
while True:
time.sleep(10)
elapsed_time = time.time() - start_time
if elapsed_time > timeout:
return f"Error: Job timed out after {timeout} seconds."
response = requests.get(f"{url_pre}/jobs/{job_id}", headers=headers)
if response.status_code != 200:
return f"Error: {response.status_code} - {response.text}"
get_job_response_data = response.json()
job_status = get_job_response_data['job']['status']
if job_status == 'SUCCESS':
image_url = get_job_response_data['job']['successInfo']['images'][0]['url']
response_image = requests.get(image_url)
img = Image.open(BytesIO(response_image.content))
save_path = Path(SAVE_DIR) / f"{hashlib.md5(prompt.encode()).hexdigest()}.png"
img.save(save_path)
return save_path
elif job_status == 'FAILED':
return "Error: Job failed."
def generate_mask(image_resource_id, position, selected_product_code):
try:
if not image_resource_id:
raise Exception("Không có image_resource_id hợp lệ - ảnh gốc chưa được upload")
print(f"Using image_resource_id: {image_resource_id}")
time.sleep(10) # Đợi đồng bộ tài nguyên
short_code = selected_product_code.split()[0]
texture_filepath = PRODUCT_IMAGE_MAP.get(selected_product_code)
print(f"Texture file: {texture_filepath}, exists: {os.path.exists(texture_filepath)}")
if not texture_filepath or not os.path.exists(texture_filepath):
raise Exception(f"Không tìm thấy ảnh sản phẩm cho mã {short_code}")
texture_resource_id = upload_image_to_tensorart(texture_filepath)
print(f"Texture resource_id: {texture_resource_id}")
if not texture_resource_id:
raise Exception(f"Không thể upload ảnh sản phẩm {short_code}")
time.sleep(10) # Đợi đồng bộ tài nguyên
if isinstance(position, (set, list)):
position = position[0] if position else "default"
print(f"Position: {position}, type: {type(position)}")
# Dùng params đúng như mẫu TensorArt
workflow_params = {
"1": {
"classType": "LayerMask: SegmentAnythingUltra V3",
"inputs": {
"black_point": 0.3,
"detail_dilate": 6,
"detail_erode": 65,
"detail_method": "GuidedFilter",
"device": "cuda",
"image": ["2", 0],
"max_megapixels": 2,
"process_detail": True,
"prompt": ["4", 0],
"sam_models": ["3", 0],
"threshold": 0.3,
"white_point": 0.99
},
"properties": {"Node name for S&R": "LayerMask: SegmentAnythingUltra V3"}
},
"10": {
"classType": "Image Seamless Texture",
"inputs": {
"blending": 0.37,
"images": ["17", 0],
"tiled": "true",
"tiles": 2
},
"properties": {"Node name for S&R": "Image Seamless Texture"}
},
"13": {
"classType": "Paste By Mask",
"inputs": {
"image_base": ["2", 0],
"image_to_paste": ["10", 0],
"mask": ["8", 0],
"resize_behavior": "resize"
},
"properties": {"Node name for S&R": "Paste By Mask"}
},
"17": {
"classType": "TensorArt_LoadImage",
"inputs": {
"_height": 768,
"_width": 512,
"image": texture_resource_id,
"upload": "image"
},
"properties": {"Node name for S&R": "TensorArt_LoadImage"}
},
"2": {
"classType": "TensorArt_LoadImage",
"inputs": {
"_height": 1024,
"_width": 768,
"image": image_resource_id,
"upload": "image"
},
"properties": {"Node name for S&R": "TensorArt_LoadImage"}
},
"3": {
"classType": "LayerMask: LoadSegmentAnythingModels",
"inputs": {
"grounding_dino_model": "GroundingDINO_SwinB (938MB)",
"sam_model": "sam_vit_h (2.56GB)"
},
"properties": {"Node name for S&R": "LayerMask: LoadSegmentAnythingModels"}
},
"4": {
"classType": "TensorArt_PromptText",
"inputs": {"Text": position.lower()},
"properties": {"Node name for S&R": "TensorArt_PromptText"}
},
"7": {
"classType": "PreviewImage",
"inputs": {"images": ["13", 0]},
"properties": {"Node name for S&R": "PreviewImage"}
},
"8": {
"classType": "MaskToImage",
"inputs": {"mask": ["1", 1]},
"properties": {"Node name for S&R": "MaskToImage"}
}
}
payload = {
"requestId": f"workflow_{int(time.time())}",
"params": workflow_params,
"runningNotifyUrl": ""
}
output_path = run_workflow(payload, "full_workflow")
return output_path
except Exception as e:
print(f"Mask generation error: {str(e)}")
return None
def run_workflow(payload, step_name):
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json',
'Authorization': f'Bearer {api_key_token}'
}
response = requests.post(f"{url_pre}/jobs/workflow", json=payload, headers=headers, timeout=300)
if response.status_code != 200:
return None
job_id = response.json()['job']['id']
max_attempts = 36
for _ in range(max_attempts):
response = requests.get(f"{url_pre}/jobs/{job_id}", headers=headers, timeout=30)
result = response.json()
if result['job']['status'] == 'SUCCESS':
image_url = result['job']['successInfo']['images'][0]['url']
image_response = requests.get(image_url)
image = Image.open(BytesIO(image_response.content))
if image.mode == 'RGBA':
image = image.convert('RGB')
output_path = Path(SAVE_DIR) / f"{step_name}_{int(time.time())}.jpg"
image.save(output_path)
return str(output_path)
time.sleep(5)
return None
# API endpoints cho frontend
def api_text2img(prompt, size, custom_size, product_codes):
try:
width, height = map(int, (custom_size if size == "Custom size" else size).split("x"))
if not product_codes:
return {"error": "At least one product code required"}
short_codes = [code.split()[0] for code in product_codes]
rewritten_prompt = rewrite_prompt_with_groq(prompt, short_codes)
result = txt2img(rewritten_prompt, width, height, short_codes)
if isinstance(result, str):
return {"error": result}
return {"image_url": f"/file={result}"}
except Exception as e:
return {"error": str(e)}
def api_img2img(file, position, size, custom_size, product_codes):
try:
width, height = map(int, (custom_size if size == "Custom size" else size).split("x"))
if not product_codes:
return {"error": "At least one product code required"}
image_path = Path(SAVE_DIR) / f"input_{int(time.time())}.jpg"
file.save(image_path)
image_resource_id = upload_image_to_tensorart(str(image_path))
if not image_resource_id:
return {"error": "Failed to upload image"}
output_path = generate_mask(image_resource_id, position, product_codes[0])
if not output_path:
return {"error": "Failed to generate image"}
return {"image_url": f"/file={output_path}"}
except Exception as e:
return {"error": str(e)}
# Giao diện Gradio (tùy chọn)
with gr.Blocks() as demo:
gr.Markdown("## Backend Gradio cho CaslaQuartz")
gr.Interface(fn=lambda x: "API only", inputs="text", outputs="text")
# Khởi chạy Gradio với API
demo.launch(
server_name="0.0.0.0",
server_port=7860
) |