Update app_test.py
Browse files- app_test.py +178 -10
app_test.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
import
|
| 2 |
import huggingface_hub
|
| 3 |
|
| 4 |
huggingface_hub.snapshot_download(
|
|
@@ -11,18 +11,186 @@ huggingface_hub.snapshot_download(
|
|
| 11 |
local_dir_use_symlinks=False,
|
| 12 |
)
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
import huggingface_hub
|
| 3 |
|
| 4 |
huggingface_hub.snapshot_download(
|
|
|
|
| 11 |
local_dir_use_symlinks=False,
|
| 12 |
)
|
| 13 |
|
| 14 |
+
import gradio as gr
|
| 15 |
+
from diffusers import StableDiffusionXLControlNetInpaintPipeline, ControlNetModel
|
| 16 |
+
from rembg import remove
|
| 17 |
+
from PIL import Image
|
| 18 |
+
import torch
|
| 19 |
+
from ip_adapter import IPAdapterXL
|
| 20 |
+
from ip_adapter.utils import register_cross_attention_hook, get_net_attn_map, attnmaps2images
|
| 21 |
+
from PIL import Image, ImageChops, ImageEnhance
|
| 22 |
+
import numpy as np
|
| 23 |
+
|
| 24 |
import os
|
| 25 |
+
import glob
|
| 26 |
+
import torch
|
| 27 |
+
import cv2
|
| 28 |
+
import argparse
|
| 29 |
+
|
| 30 |
+
import DPT.util.io
|
| 31 |
+
|
| 32 |
+
from torchvision.transforms import Compose
|
| 33 |
+
|
| 34 |
+
from DPT.dpt.models import DPTDepthModel
|
| 35 |
+
from DPT.dpt.midas_net import MidasNet_large
|
| 36 |
+
from DPT.dpt.transforms import Resize, NormalizeImage, PrepareForNet
|
| 37 |
+
|
| 38 |
+
"""
|
| 39 |
+
Get ZeST Ready
|
| 40 |
+
"""
|
| 41 |
+
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 42 |
+
image_encoder_path = "models/image_encoder"
|
| 43 |
+
ip_ckpt = "sdxl_models/ip-adapter_sdxl_vit-h.bin"
|
| 44 |
+
controlnet_path = "diffusers/controlnet-depth-sdxl-1.0"
|
| 45 |
+
device = "cuda"
|
| 46 |
+
torch.cuda.empty_cache()
|
| 47 |
+
|
| 48 |
+
# load SDXL pipeline
|
| 49 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_path, variant="fp16", use_safetensors=True, torch_dtype=torch.float16).to(device)
|
| 50 |
+
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(
|
| 51 |
+
base_model_path,
|
| 52 |
+
controlnet=controlnet,
|
| 53 |
+
use_safetensors=True,
|
| 54 |
+
torch_dtype=torch.float16,
|
| 55 |
+
add_watermarker=False,
|
| 56 |
+
).to(device)
|
| 57 |
+
pipe.unet = register_cross_attention_hook(pipe.unet)
|
| 58 |
+
|
| 59 |
+
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
"""
|
| 63 |
+
Get Depth Model Ready
|
| 64 |
+
"""
|
| 65 |
+
model_path = "DPT/weights/dpt_hybrid-midas-501f0c75.pt"
|
| 66 |
+
net_w = net_h = 384
|
| 67 |
+
model = DPTDepthModel(
|
| 68 |
+
path=model_path,
|
| 69 |
+
backbone="vitb_rn50_384",
|
| 70 |
+
non_negative=True,
|
| 71 |
+
enable_attention_hooks=False,
|
| 72 |
+
)
|
| 73 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 74 |
+
|
| 75 |
+
transform = Compose(
|
| 76 |
+
[
|
| 77 |
+
Resize(
|
| 78 |
+
net_w,
|
| 79 |
+
net_h,
|
| 80 |
+
resize_target=None,
|
| 81 |
+
keep_aspect_ratio=True,
|
| 82 |
+
ensure_multiple_of=32,
|
| 83 |
+
resize_method="minimal",
|
| 84 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
| 85 |
+
),
|
| 86 |
+
normalization,
|
| 87 |
+
PrepareForNet(),
|
| 88 |
+
]
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
model.eval()
|
| 92 |
+
|
| 93 |
+
@spaces.GPU()
|
| 94 |
+
def greet(input_image, material_exemplar):
|
| 95 |
+
|
| 96 |
+
"""
|
| 97 |
+
Compute depth map from input_image
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
img = np.array(input_image)
|
| 101 |
+
|
| 102 |
+
img_input = transform({"image": img})["image"]
|
| 103 |
+
|
| 104 |
+
# compute
|
| 105 |
+
with torch.no_grad():
|
| 106 |
+
sample = torch.from_numpy(img_input).unsqueeze(0)
|
| 107 |
+
|
| 108 |
+
# if optimize == True and device == torch.device("cuda"):
|
| 109 |
+
# sample = sample.to(memory_format=torch.channels_last)
|
| 110 |
+
# sample = sample.half()
|
| 111 |
|
| 112 |
+
prediction = model.forward(sample)
|
| 113 |
+
prediction = (
|
| 114 |
+
torch.nn.functional.interpolate(
|
| 115 |
+
prediction.unsqueeze(1),
|
| 116 |
+
size=img.shape[:2],
|
| 117 |
+
mode="bicubic",
|
| 118 |
+
align_corners=False,
|
| 119 |
+
)
|
| 120 |
+
.squeeze()
|
| 121 |
+
.cpu()
|
| 122 |
+
.numpy()
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
depth_min = prediction.min()
|
| 126 |
+
depth_max = prediction.max()
|
| 127 |
+
bits = 2
|
| 128 |
+
max_val = (2 ** (8 * bits)) - 1
|
| 129 |
|
| 130 |
+
if depth_max - depth_min > np.finfo("float").eps:
|
| 131 |
+
out = max_val * (prediction - depth_min) / (depth_max - depth_min)
|
| 132 |
+
else:
|
| 133 |
+
out = np.zeros(prediction.shape, dtype=depth.dtype)
|
| 134 |
+
|
| 135 |
+
out = (out / 256).astype('uint8')
|
| 136 |
+
depth_map = Image.fromarray(out).resize((1024, 1024))
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
"""
|
| 140 |
+
Process foreground decolored image
|
| 141 |
+
"""
|
| 142 |
+
rm_bg = remove(input_image)
|
| 143 |
+
target_mask = rm_bg.convert("RGB").point(lambda x: 0 if x < 1 else 255).convert('L').convert('RGB')
|
| 144 |
+
mask_target_img = ImageChops.lighter(input_image, target_mask)
|
| 145 |
+
invert_target_mask = ImageChops.invert(target_mask)
|
| 146 |
+
gray_target_image = input_image.convert('L').convert('RGB')
|
| 147 |
+
gray_target_image = ImageEnhance.Brightness(gray_target_image)
|
| 148 |
+
factor = 1.0 # Try adjusting this to get the desired brightness
|
| 149 |
+
gray_target_image = gray_target_image.enhance(factor)
|
| 150 |
+
grayscale_img = ImageChops.darker(gray_target_image, target_mask)
|
| 151 |
+
img_black_mask = ImageChops.darker(input_image, invert_target_mask)
|
| 152 |
+
grayscale_init_img = ImageChops.lighter(img_black_mask, grayscale_img)
|
| 153 |
+
init_img = grayscale_init_img
|
| 154 |
+
|
| 155 |
+
"""
|
| 156 |
+
Process material exemplar and resize all images
|
| 157 |
+
"""
|
| 158 |
+
ip_image = material_exemplar.resize((1024, 1024))
|
| 159 |
+
init_img = init_img.resize((1024,1024))
|
| 160 |
+
mask = target_mask.resize((1024, 1024))
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
num_samples = 1
|
| 164 |
+
images = ip_model.generate(pil_image=ip_image, image=init_img, control_image=depth_map, mask_image=mask, controlnet_conditioning_scale=0.9, num_samples=num_samples, num_inference_steps=30, seed=42)
|
| 165 |
+
|
| 166 |
+
return images[0]
|
| 167 |
|
| 168 |
+
css = """
|
| 169 |
+
#col-container{
|
| 170 |
+
margin: 0 auto;
|
| 171 |
+
max-width: 960px;
|
| 172 |
+
}
|
| 173 |
+
"""
|
| 174 |
|
| 175 |
+
with gr.Blocks(css=css) as demo:
|
| 176 |
+
with gr.Column(elem_id="col-container"):
|
| 177 |
+
gr.Markdown("""
|
| 178 |
+
# ZeST: Zero-Shot Material Transfer from a Single Image
|
| 179 |
+
<p>Upload two images -- input image and material exemplar. (both 1024*1024 for better results) <br />
|
| 180 |
+
ZeST extracts the material from the exemplar and cast it onto the input image following the original lighting cues.</p>
|
| 181 |
+
""")
|
| 182 |
+
with gr.Row():
|
| 183 |
+
with gr.Column():
|
| 184 |
+
with gr.Row():
|
| 185 |
+
input_image = gr.Image(type="pil", label="input image")
|
| 186 |
+
input_image2 = gr.Image(type="pil", label = "material examplar")
|
| 187 |
+
submit_btn = gr.Button("Submit")
|
| 188 |
+
gr.Examples(
|
| 189 |
+
examples = [["demo_assets/input_imgs/pumpkin.png", "demo_assets/material_exemplars/cup_glaze.png"]],
|
| 190 |
+
inputs = [input_image, input_image2]
|
| 191 |
+
)
|
| 192 |
+
with gr.Column():
|
| 193 |
+
output_image = gr.Image(label="transfer result")
|
| 194 |
+
submit_btn.click(fn=greet, inputs=[input_image, input_image2], outputs=[output_image])
|
| 195 |
|
| 196 |
+
demo.queue().launch()
|