Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,7 +26,7 @@ def dict2namespace(config):
|
|
| 26 |
setattr(namespace, key, new_value)
|
| 27 |
return namespace
|
| 28 |
|
| 29 |
-
def load_img
|
| 30 |
img = np.array(Image.open(filename).convert("RGB"))
|
| 31 |
h, w = img.shape[:2]
|
| 32 |
|
|
@@ -39,20 +39,19 @@ def load_img (filename, norm=True,):
|
|
| 39 |
img = img.astype(np.float32)
|
| 40 |
return img
|
| 41 |
|
| 42 |
-
def process_img
|
| 43 |
img = np.array(image)
|
| 44 |
img = img / 255.
|
| 45 |
img = img.astype(np.float32)
|
| 46 |
-
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device)
|
| 47 |
|
| 48 |
with torch.no_grad():
|
| 49 |
x_hat = model(y)
|
| 50 |
|
| 51 |
-
restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy()
|
| 52 |
-
restored_img = np.clip(restored_img, 0
|
| 53 |
|
| 54 |
restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8
|
| 55 |
-
#return Image.fromarray(restored_img) #
|
| 56 |
return (image, Image.fromarray(restored_img))
|
| 57 |
|
| 58 |
def load_network(net, load_path, strict=True, param_key='params'):
|
|
@@ -87,23 +86,21 @@ model = seemore.SeemoRe(scale=cfg.model.scale, in_chans=cfg.model.in_chans,
|
|
| 87 |
recursive=cfg.model.recursive, lr_space=cfg.model.lr_space, topk=cfg.model.topk)
|
| 88 |
|
| 89 |
model = model.to(device)
|
| 90 |
-
print
|
| 91 |
load_network(model, MODEL_NAME, strict=True, param_key='params')
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
| 100 |
demo = gr.Interface(
|
| 101 |
fn=process_img,
|
| 102 |
-
inputs=[gr.Image(type="pil", label="Input", value="images/0878x4.png")
|
| 103 |
outputs=ImageSlider(label="Super-Resolved Image",
|
| 104 |
type="pil",
|
| 105 |
-
show_download_button=True,
|
| 106 |
-
), #[gr.Image(type="pil", label="Ouput", min_width=500)],
|
| 107 |
title=title,
|
| 108 |
description=description,
|
| 109 |
article=article,
|
|
|
|
| 26 |
setattr(namespace, key, new_value)
|
| 27 |
return namespace
|
| 28 |
|
| 29 |
+
def load_img(filename, norm=True):
|
| 30 |
img = np.array(Image.open(filename).convert("RGB"))
|
| 31 |
h, w = img.shape[:2]
|
| 32 |
|
|
|
|
| 39 |
img = img.astype(np.float32)
|
| 40 |
return img
|
| 41 |
|
| 42 |
+
def process_img(image):
|
| 43 |
img = np.array(image)
|
| 44 |
img = img / 255.
|
| 45 |
img = img.astype(np.float32)
|
| 46 |
+
y = torch.tensor(img).permute(2, 0, 1).unsqueeze(0).to(device)
|
| 47 |
|
| 48 |
with torch.no_grad():
|
| 49 |
x_hat = model(y)
|
| 50 |
|
| 51 |
+
restored_img = x_hat.squeeze().permute(1, 2, 0).clamp_(0, 1).cpu().detach().numpy()
|
| 52 |
+
restored_img = np.clip(restored_img, 0., 1.)
|
| 53 |
|
| 54 |
restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8
|
|
|
|
| 55 |
return (image, Image.fromarray(restored_img))
|
| 56 |
|
| 57 |
def load_network(net, load_path, strict=True, param_key='params'):
|
|
|
|
| 86 |
recursive=cfg.model.recursive, lr_space=cfg.model.lr_space, topk=cfg.model.topk)
|
| 87 |
|
| 88 |
model = model.to(device)
|
| 89 |
+
print("IMAGE MODEL CKPT:", MODEL_NAME)
|
| 90 |
load_network(model, MODEL_NAME, strict=True, param_key='params')
|
| 91 |
|
| 92 |
+
title = "Enhance Quality"
|
| 93 |
+
description = "This application enhances the quality of images using a super-resolution model."
|
| 94 |
+
article = "This is an article about the application."
|
| 95 |
+
examples = [["images/0878x4.png"]]
|
| 96 |
+
css = None
|
|
|
|
| 97 |
|
| 98 |
demo = gr.Interface(
|
| 99 |
fn=process_img,
|
| 100 |
+
inputs=[gr.Image(type="pil", label="Input", value="images/0878x4.png")],
|
| 101 |
outputs=ImageSlider(label="Super-Resolved Image",
|
| 102 |
type="pil",
|
| 103 |
+
show_download_button=True),
|
|
|
|
| 104 |
title=title,
|
| 105 |
description=description,
|
| 106 |
article=article,
|