Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,25 @@
|
|
| 1 |
-
from transformers import
|
| 2 |
import gradio as grad
|
| 3 |
-
|
|
|
|
| 4 |
|
| 5 |
-
mdl_name = "distilbert-base-cased-distilled-squad"
|
| 6 |
-
my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
|
| 7 |
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
return response
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
| 2 |
import gradio as grad
|
| 3 |
+
text2text_tkn = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small")
|
| 4 |
+
mdl = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small")
|
| 5 |
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
def text2text_summary(para):
|
| 8 |
+
initial_txt = para.strip().replace("\n","")
|
| 9 |
+
tkn_text = text2text_tkn.encode(initial_txt, return_tensors="pt")
|
| 10 |
|
| 11 |
+
tkn_ids = mdl.generate(
|
| 12 |
+
tkn_text,
|
| 13 |
+
max_length=250,
|
| 14 |
+
num_beams=5,
|
| 15 |
+
repetition_penalty=2.5,
|
| 16 |
+
|
| 17 |
+
early_stopping=True
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
response = text2text_tkn.decode(tkn_ids[0], skip_special_tokens=True)
|
| 21 |
return response
|
| 22 |
+
|
| 23 |
+
para=grad.Textbox(lines=10, label="Paragraph", placeholder="Copy paragraph")
|
| 24 |
+
out=grad.Textbox(lines=1, label="Summary")
|
| 25 |
+
grad.Interface(text2text_summary, inputs=para, outputs=out).launch()
|