Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# 1) Load the HF pipeline with all scores so we can show probabilities
|
5 |
+
classifier = pipeline(
|
6 |
+
"text-classification",
|
7 |
+
model="j-hartmann/emotion-english-roberta-large",
|
8 |
+
return_all_scores=True
|
9 |
+
)
|
10 |
+
|
11 |
+
# 2) Wrap it in a function that returns a label→score dict
|
12 |
+
def classify_emotion(text: str):
|
13 |
+
scores = classifier(text)[0] # returns list of {label, score}
|
14 |
+
return {item["label"]: float(item["score"]) for item in scores}
|
15 |
+
|
16 |
+
# 3) Build the Gradio interface
|
17 |
+
iface = gr.Interface(
|
18 |
+
fn=classify_emotion,
|
19 |
+
inputs=gr.Textbox(
|
20 |
+
lines=2,
|
21 |
+
placeholder="Type any English sentence here…",
|
22 |
+
label="Input Text"
|
23 |
+
),
|
24 |
+
outputs=gr.Label(
|
25 |
+
num_top_classes=6,
|
26 |
+
label="Emotion Probabilities"
|
27 |
+
),
|
28 |
+
examples=[
|
29 |
+
["I love you!"],
|
30 |
+
["The movie was heart breaking!"]
|
31 |
+
],
|
32 |
+
title="English Emotion Classifier",
|
33 |
+
description=(
|
34 |
+
"Predicts one of Ekman's 6 basic emotions plus neutral "
|
35 |
+
"(anger 🤬, disgust 🤢, fear 😨, joy 😀, neutral 😐, "
|
36 |
+
"sadness 😭, surprise 😲)."
|
37 |
+
)
|
38 |
+
)
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
iface.launch()
|