uppdated app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,84 @@
|
|
1 |
# app.py
|
2 |
|
|
|
3 |
import sys
|
4 |
import torchvision.transforms.functional as F
|
5 |
sys.modules['torchvision.transforms.functional_tensor'] = F
|
6 |
|
|
|
7 |
import gradio as gr
|
8 |
import torch
|
9 |
-
|
10 |
-
|
11 |
from PIL import Image
|
|
|
12 |
|
|
|
|
|
|
|
13 |
|
14 |
-
# 1. Initialize
|
15 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
16 |
"runwayml/stable-diffusion-inpainting",
|
17 |
torch_dtype=torch.float32,
|
18 |
)
|
19 |
pipe.to("cpu")
|
20 |
|
21 |
-
# 2.
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def fill_and_upscale(input_img: Image.Image,
|
26 |
-
mask_img:
|
27 |
-
prompt:
|
28 |
-
#
|
29 |
init = input_img.convert("RGB")
|
30 |
mask = mask_img.convert("RGB")
|
|
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
-
|
|
|
34 |
|
35 |
-
#
|
36 |
-
|
|
|
|
|
37 |
|
38 |
return filled, upscaled
|
39 |
|
40 |
-
#
|
41 |
with gr.Blocks() as demo:
|
42 |
-
gr.Markdown("##
|
43 |
with gr.Row():
|
44 |
with gr.Column():
|
45 |
-
inp
|
46 |
-
msk
|
47 |
-
prompt
|
48 |
-
|
|
|
|
|
|
|
49 |
with gr.Column():
|
50 |
out1 = gr.Image(type="pil", label="Inpainted")
|
51 |
out2 = gr.Image(type="pil", label="Upscaled")
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
demo.launch()
|
|
|
1 |
# app.py
|
2 |
|
3 |
+
# ── Monkey‐patch missing torchvision module ──
|
4 |
import sys
|
5 |
import torchvision.transforms.functional as F
|
6 |
sys.modules['torchvision.transforms.functional_tensor'] = F
|
7 |
|
8 |
+
import os
|
9 |
import gradio as gr
|
10 |
import torch
|
11 |
+
import numpy as np
|
12 |
+
import cv2
|
13 |
from PIL import Image
|
14 |
+
from diffusers import StableDiffusionInpaintPipeline
|
15 |
|
16 |
+
# Import the RealESRGANer helper and architecture
|
17 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet # RRDB backbone :contentReference[oaicite:0]{index=0}
|
18 |
+
from realesrgan.utils import RealESRGANer # RealESRGANer class :contentReference[oaicite:1]{index=1}
|
19 |
|
20 |
+
# 1. Initialize Stable Diffusion InpaintPipeline on CPU
|
21 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
22 |
"runwayml/stable-diffusion-inpainting",
|
23 |
torch_dtype=torch.float32,
|
24 |
)
|
25 |
pipe.to("cpu")
|
26 |
|
27 |
+
# 2. Build the RRDBNet model and RealESRGANer (4×) on CPU
|
28 |
+
device = torch.device("cpu")
|
29 |
+
rrdb = RRDBNet(
|
30 |
+
num_in_ch=3, num_out_ch=3,
|
31 |
+
num_feat=64, num_block=23,
|
32 |
+
num_grow_ch=32, scale=4
|
33 |
+
)
|
34 |
+
# Pass a GitHub URL so it downloads under-the-hood
|
35 |
+
esrgan = RealESRGANer(
|
36 |
+
scale=4,
|
37 |
+
model_path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
38 |
+
model=rrdb,
|
39 |
+
tile=0, tile_pad=10, pre_pad=10,
|
40 |
+
half=False,
|
41 |
+
device=device,
|
42 |
+
)
|
43 |
|
44 |
def fill_and_upscale(input_img: Image.Image,
|
45 |
+
mask_img: Image.Image,
|
46 |
+
prompt: str):
|
47 |
+
# Inpaint
|
48 |
init = input_img.convert("RGB")
|
49 |
mask = mask_img.convert("RGB")
|
50 |
+
filled: Image.Image = pipe(
|
51 |
+
prompt=prompt, image=init, mask_image=mask
|
52 |
+
).images[0]
|
53 |
|
54 |
+
# Prepare for Real-ESRGANer (expects BGR numpy)
|
55 |
+
arr = np.array(filled)
|
56 |
+
bgr = cv2.cvtColor(arr, cv2.COLOR_RGB2BGR)
|
57 |
|
58 |
+
# Upscale
|
59 |
+
out_bgr, _ = esrgan.enhance(bgr, outscale=None)
|
60 |
+
out_rgb = cv2.cvtColor(out_bgr, cv2.COLOR_BGR2RGB)
|
61 |
+
upscaled = Image.fromarray(out_rgb)
|
62 |
|
63 |
return filled, upscaled
|
64 |
|
65 |
+
# 3. Gradio UI
|
66 |
with gr.Blocks() as demo:
|
67 |
+
gr.Markdown("## Inpaint + 4× Upscale (CPU Only)")
|
68 |
with gr.Row():
|
69 |
with gr.Column():
|
70 |
+
inp = gr.Image(type="pil", label="Input Image")
|
71 |
+
msk = gr.Image(type="pil", label="Mask (white=fill)")
|
72 |
+
prompt = gr.Textbox(
|
73 |
+
label="Prompt",
|
74 |
+
placeholder="e.g. A serene waterfall at dawn"
|
75 |
+
)
|
76 |
+
btn = gr.Button("Run")
|
77 |
with gr.Column():
|
78 |
out1 = gr.Image(type="pil", label="Inpainted")
|
79 |
out2 = gr.Image(type="pil", label="Upscaled")
|
80 |
|
81 |
+
btn.click(fill_and_upscale, [inp, msk, prompt], [out1, out2])
|
82 |
|
83 |
+
if __name__ == "__main__":
|
84 |
+
demo.launch()
|