Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| # Import constants | |
| import numpy as np | |
| import torch | |
| import utils.constants as constants | |
| import gradio as gr | |
| from PIL import Image | |
| from haishoku.haishoku import Haishoku | |
| from tempfile import NamedTemporaryFile | |
| #from pathlib import Path | |
| import atexit | |
| import random | |
| import logging | |
| import accelerate | |
| from transformers import AutoTokenizer | |
| import gc | |
| IS_SHARED_SPACE = constants.IS_SHARED_SPACE | |
| # Import functions from modules | |
| from utils.file_utils import cleanup_temp_files | |
| from utils.color_utils import ( | |
| hex_to_rgb, | |
| detect_color_format, | |
| update_color_opacity, | |
| ) | |
| from utils.misc import (get_filename, pause, convert_ratio_to_dimensions, install_cuda_toolkit,install_torch, _get_output, setup_runtime_env) | |
| from utils.depth_estimation import estimate_depth, create_3d_model, generate_depth_and_3d, generate_depth_button_click | |
| from utils.image_utils import ( | |
| change_color, | |
| open_image, | |
| build_prerendered_images, | |
| upscale_image, | |
| lerp_imagemath, | |
| shrink_and_paste_on_blank, | |
| show_lut, | |
| apply_lut_to_image_path, | |
| multiply_and_blend_images, | |
| alpha_composite_with_control, | |
| crop_and_resize_image | |
| ) | |
| from utils.hex_grid import ( | |
| generate_hexagon_grid, | |
| generate_hexagon_grid_interface, | |
| ) | |
| from utils.excluded_colors import ( | |
| add_color, | |
| delete_color, | |
| build_dataframe, | |
| on_input, | |
| excluded_color_list, | |
| on_color_display_select | |
| ) | |
| # from utils.ai_generator import ( | |
| # generate_ai_image, | |
| # ) | |
| from utils.version_info import ( | |
| versions_html, | |
| #initialize_cuda, | |
| #release_torch_resources, | |
| get_torch_info | |
| ) | |
| from utils.lora_details import ( | |
| upd_prompt_notes, | |
| split_prompt_precisely, | |
| approximate_token_count, | |
| get_trigger_words | |
| ) | |
| from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline | |
| PIPELINE_CLASSES = { | |
| "FluxPipeline": FluxPipeline, | |
| "FluxImg2ImgPipeline": FluxImg2ImgPipeline, | |
| "FluxControlPipeline": FluxControlPipeline | |
| } | |
| import spaces | |
| input_image_palette = [] | |
| current_prerendered_image = gr.State("./images/images/Beeuty-1.png") | |
| # Register the cleanup function | |
| atexit.register(cleanup_temp_files) | |
| def hex_create(hex_size, border_size, input_image_path, start_x, start_y, end_x, end_y, rotation, background_color_hex, background_opacity, border_color_hex, border_opacity, fill_hex, excluded_colors_var, filter_color, x_spacing, y_spacing, add_hex_text_option=None, custom_text_list=None, custom_text_color_list=None): | |
| global input_image_palette | |
| try: | |
| # Load and process the input image | |
| input_image = Image.open(input_image_path).convert("RGBA") | |
| except Exception as e: | |
| print(f"Failed to convert image to RGBA: {e}") | |
| # Open the original image without conversion | |
| input_image = Image.open(input_image_path) | |
| # Ensure the canvas is at least 1344x768 pixels | |
| min_width, min_height = 1344, 768 | |
| canvas_width = max(min_width, input_image.width) | |
| canvas_height = max(min_height, input_image.height) | |
| # Create a transparent canvas with the required dimensions | |
| new_canvas = Image.new("RGBA", (canvas_width, canvas_height), (0, 0, 0, 0)) | |
| # Calculate position to center the input image on the canvas | |
| paste_x = (canvas_width - input_image.width) // 2 | |
| paste_y = (canvas_height - input_image.height) // 2 | |
| # Paste the input image onto the canvas | |
| new_canvas.paste(input_image, (paste_x, paste_y)) | |
| # Save the 'RGBA' image to a temporary file and update 'input_image_path' | |
| with NamedTemporaryFile(delete=False, suffix=".png") as tmp_file: | |
| new_canvas.save(tmp_file.name, format="PNG") | |
| input_image_path = tmp_file.name | |
| constants.temp_files.append(tmp_file.name) | |
| # Update 'input_image' with the new image as a file path | |
| input_image = Image.open(input_image_path) | |
| # Use Haishoku to get the palette from the new image | |
| input_palette = Haishoku.loadHaishoku(input_image_path) | |
| input_image_palette = input_palette.palette | |
| # Update colors with opacity | |
| background_color = update_color_opacity( | |
| hex_to_rgb(background_color_hex), | |
| int(background_opacity * (255 / 100)) | |
| ) | |
| border_color = update_color_opacity( | |
| hex_to_rgb(border_color_hex), | |
| int(border_opacity * (255 / 100)) | |
| ) | |
| # Prepare excluded colors list | |
| excluded_color_list = [tuple(lst) for lst in excluded_colors_var] | |
| # Generate the hexagon grid images | |
| grid_image = generate_hexagon_grid_interface( | |
| hex_size, | |
| border_size, | |
| input_image, | |
| start_x, | |
| start_y, | |
| end_x, | |
| end_y, | |
| rotation, | |
| background_color, | |
| border_color, | |
| fill_hex, | |
| excluded_color_list, | |
| filter_color, | |
| x_spacing, | |
| y_spacing, | |
| add_hex_text_option, | |
| custom_text_list, | |
| custom_text_color_list | |
| ) | |
| return grid_image | |
| def get_model_and_lora(model_textbox): | |
| """ | |
| Determines the model and LoRA weights based on the model_textbox input. | |
| wieghts must be in an array ["Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"] | |
| """ | |
| # If the input is in the list of models, return it with None as LoRA weights | |
| if model_textbox in constants.MODELS: | |
| return model_textbox, [] | |
| # If the input is in the list of LoRA weights, get the corresponding model | |
| elif model_textbox in constants.LORA_WEIGHTS: | |
| model = constants.LORA_TO_MODEL.get(model_textbox) | |
| return model, model_textbox.split() | |
| else: | |
| # Default to a known model if input is unrecognized | |
| default_model = model_textbox | |
| return default_model, [] | |
| def generate_image_lowmem( | |
| text, | |
| neg_prompt=None, | |
| model_name="black-forest-labs/FLUX.1-dev", | |
| lora_weights=None, | |
| conditioned_image=None, | |
| image_width=1368, | |
| image_height=848, | |
| guidance_scale=3.5, | |
| num_inference_steps=30, | |
| seed=0, | |
| true_cfg_scale=1.0, | |
| pipeline_name="FluxPipeline", | |
| strength=0.75, | |
| additional_parameters=None, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| #from torch import cuda, bfloat16, float32, Generator, no_grad, backends | |
| # Retrieve the pipeline class from the mapping | |
| pipeline_class = PIPELINE_CLASSES.get(pipeline_name) | |
| if not pipeline_class: | |
| raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. " | |
| f"Available options: {list(PIPELINE_CLASSES.keys())}") | |
| #initialize_cuda() | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| from src.condition import Condition | |
| print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n") | |
| #print(f"\n {get_torch_info()}\n") | |
| # Disable gradient calculations | |
| with torch.no_grad(): | |
| # Initialize the pipeline inside the context manager | |
| pipe = pipeline_class.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32 | |
| ).to(device) | |
| # Optionally, don't use CPU offload if not necessary | |
| # alternative version that may be more efficient | |
| # pipe.enable_sequential_cpu_offload() | |
| if pipeline_name == "FluxPipeline": | |
| pipe.enable_model_cpu_offload() | |
| pipe.vae.enable_slicing() | |
| pipe.vae.enable_tiling() | |
| else: | |
| pipe.enable_model_cpu_offload() | |
| # Access the tokenizer from the pipeline | |
| tokenizer = pipe.tokenizer | |
| # Check if add_prefix_space is set and convert to slow tokenizer if necessary | |
| if getattr(tokenizer, 'add_prefix_space', False): | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, device_map = 'cpu') | |
| # Update the pipeline's tokenizer | |
| pipe.tokenizer = tokenizer | |
| pipe.to(device) | |
| flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled() | |
| if flash_attention_enabled == False: | |
| #Enable xFormers memory-efficient attention (optional) | |
| #pipe.enable_xformers_memory_efficient_attention() | |
| print("\nEnabled xFormers memory-efficient attention.\n") | |
| else: | |
| pipe.attn_implementation="flash_attention_2" | |
| print("\nEnabled flash_attention_2.\n") | |
| condition_type = "subject" | |
| # Load LoRA weights | |
| # note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125]) | |
| if lora_weights: | |
| for lora_weight in lora_weights: | |
| lora_configs = constants.LORA_DETAILS.get(lora_weight, []) | |
| lora_weight_set = False | |
| if lora_configs: | |
| for config in lora_configs: | |
| # Load LoRA weights with optional weight_name and adapter_name | |
| if 'weight_name' in config: | |
| weight_name = config.get("weight_name") | |
| adapter_name = config.get("adapter_name") | |
| lora_collection = config.get("lora_collection") | |
| if weight_name and adapter_name and lora_collection and lora_weight_set == False: | |
| pipe.load_lora_weights( | |
| lora_collection, | |
| weight_name=weight_name, | |
| adapter_name=adapter_name, | |
| token=constants.HF_API_TOKEN | |
| ) | |
| lora_weight_set = True | |
| print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n") | |
| elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False: | |
| pipe.load_lora_weights( | |
| lora_collection, | |
| weight_name=weight_name, | |
| token=constants.HF_API_TOKEN | |
| ) | |
| lora_weight_set = True | |
| print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n") | |
| elif weight_name and adapter_name and lora_weight_set == False: | |
| pipe.load_lora_weights( | |
| lora_weight, | |
| weight_name=weight_name, | |
| adapter_name=adapter_name, | |
| token=constants.HF_API_TOKEN | |
| ) | |
| lora_weight_set = True | |
| print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n") | |
| elif weight_name and adapter_name==None and lora_weight_set == False: | |
| pipe.load_lora_weights( | |
| lora_weight, | |
| weight_name=weight_name, | |
| token=constants.HF_API_TOKEN | |
| ) | |
| lora_weight_set = True | |
| print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n") | |
| elif lora_weight_set == False: | |
| pipe.load_lora_weights( | |
| lora_weight, | |
| token=constants.HF_API_TOKEN | |
| ) | |
| lora_weight_set = True | |
| print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n") | |
| # Apply 'pipe' configurations if present | |
| if 'pipe' in config: | |
| pipe_config = config['pipe'] | |
| for method_name, params in pipe_config.items(): | |
| method = getattr(pipe, method_name, None) | |
| if method: | |
| print(f"Applying pipe method: {method_name} with params: {params}") | |
| method(**params) | |
| else: | |
| print(f"Method {method_name} not found in pipe.") | |
| if 'condition_type' in config: | |
| condition_type = config['condition_type'] | |
| if condition_type == "coloring": | |
| #pipe.enable_coloring() | |
| print("\nEnabled coloring.\n") | |
| elif condition_type == "deblurring": | |
| #pipe.enable_deblurring() | |
| print("\nEnabled deblurring.\n") | |
| elif condition_type == "fill": | |
| #pipe.enable_fill() | |
| print("\nEnabled fill.\n") | |
| elif condition_type == "depth": | |
| #pipe.enable_depth() | |
| print("\nEnabled depth.\n") | |
| elif condition_type == "canny": | |
| #pipe.enable_canny() | |
| print("\nEnabled canny.\n") | |
| elif condition_type == "subject": | |
| #pipe.enable_subject() | |
| print("\nEnabled subject.\n") | |
| else: | |
| print(f"Condition type {condition_type} not implemented.") | |
| else: | |
| pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN) | |
| # Set the random seed for reproducibility | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| conditions = [] | |
| if conditioned_image is not None: | |
| conditioned_image = crop_and_resize_image(conditioned_image, image_width, image_height) | |
| condition = Condition(condition_type, conditioned_image) | |
| conditions.append(condition) | |
| print(f"\nAdded conditioned image.\n {conditioned_image.size}") | |
| # Prepare the parameters for image generation | |
| additional_parameters ={ | |
| "strength": strength, | |
| "image": conditioned_image, | |
| } | |
| else: | |
| print("\nNo conditioned image provided.") | |
| if neg_prompt!=None: | |
| true_cfg_scale=1.1 | |
| additional_parameters ={ | |
| "negative_prompt": neg_prompt, | |
| "true_cfg_scale": true_cfg_scale, | |
| } | |
| # handle long prompts by splitting them | |
| if approximate_token_count(text) > 76: | |
| prompt, prompt2 = split_prompt_precisely(text) | |
| prompt_parameters = { | |
| "prompt" : prompt, | |
| "prompt_2": prompt2 | |
| } | |
| else: | |
| prompt_parameters = { | |
| "prompt" :text | |
| } | |
| additional_parameters.update(prompt_parameters) | |
| # Combine all parameters | |
| generate_params = { | |
| "height": image_height, | |
| "width": image_width, | |
| "guidance_scale": guidance_scale, | |
| "num_inference_steps": num_inference_steps, | |
| "generator": generator, } | |
| if additional_parameters: | |
| generate_params.update(additional_parameters) | |
| generate_params = {k: v for k, v in generate_params.items() if v is not None} | |
| print(f"generate_params: {generate_params}") | |
| # Generate the image | |
| result = pipe(**generate_params) | |
| image = result.images[0] | |
| # Clean up | |
| del result | |
| del conditions | |
| del generator | |
| # Delete the pipeline and clear cache | |
| del pipe | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| print(torch.cuda.memory_summary(device=None, abbreviated=False)) | |
| return image | |
| def generate_ai_image_local ( | |
| map_option, | |
| prompt_textbox_value, | |
| neg_prompt_textbox_value, | |
| model="black-forest-labs/FLUX.1-dev", | |
| lora_weights=None, | |
| conditioned_image=None, | |
| height=512, | |
| width=912, | |
| num_inference_steps=30, | |
| guidance_scale=3.5, | |
| seed=777, | |
| pipeline_name="FluxPipeline", | |
| strength=0.75, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| print(f"Generating image with lowmem") | |
| try: | |
| if map_option != "Prompt": | |
| prompt = constants.PROMPTS[map_option] | |
| negative_prompt = constants.NEGATIVE_PROMPTS.get(map_option, "") | |
| else: | |
| prompt = prompt_textbox_value | |
| negative_prompt = neg_prompt_textbox_value or "" | |
| #full_prompt = f"{prompt} {negative_prompt}" | |
| additional_parameters = {} | |
| if lora_weights: | |
| for lora_weight in lora_weights: | |
| lora_configs = constants.LORA_DETAILS.get(lora_weight, []) | |
| for config in lora_configs: | |
| if 'parameters' in config: | |
| additional_parameters.update(config['parameters']) | |
| elif 'trigger_words' in config: | |
| trigger_words = get_trigger_words(lora_weight) | |
| prompt = f"{trigger_words} {prompt}" | |
| for key, value in additional_parameters.items(): | |
| if key in ['height', 'width', 'num_inference_steps', 'max_sequence_length']: | |
| additional_parameters[key] = int(value) | |
| elif key in ['guidance_scale','true_cfg_scale']: | |
| additional_parameters[key] = float(value) | |
| height = additional_parameters.pop('height', height) | |
| width = additional_parameters.pop('width', width) | |
| num_inference_steps = additional_parameters.pop('num_inference_steps', num_inference_steps) | |
| guidance_scale = additional_parameters.pop('guidance_scale', guidance_scale) | |
| print("Generating image with the following parameters:") | |
| print(f"Model: {model}") | |
| print(f"LoRA Weights: {lora_weights}") | |
| print(f"Prompt: {prompt}") | |
| print(f"Neg Prompt: {negative_prompt}") | |
| print(f"Height: {height}") | |
| print(f"Width: {width}") | |
| print(f"Number of Inference Steps: {num_inference_steps}") | |
| print(f"Guidance Scale: {guidance_scale}") | |
| print(f"Seed: {seed}") | |
| print(f"Additional Parameters: {additional_parameters}") | |
| print(f"Conditioned Image: {conditioned_image}") | |
| print(f"Conditioned Image Strength: {strength}") | |
| print(f"pipeline: {pipeline_name}") | |
| image = generate_image_lowmem( | |
| text=prompt, | |
| model_name=model, | |
| neg_prompt=negative_prompt, | |
| lora_weights=lora_weights, | |
| conditioned_image=conditioned_image, | |
| image_width=width, | |
| image_height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| seed=seed, | |
| pipeline_name=pipeline_name, | |
| strength=strength, | |
| additional_parameters=additional_parameters | |
| ) | |
| with NamedTemporaryFile(delete=False, suffix=".png") as tmp: | |
| image.save(tmp.name, format="PNG") | |
| constants.temp_files.append(tmp.name) | |
| print(f"Image saved to {tmp.name}") | |
| #release_torch_resources() | |
| gc.collect() | |
| return tmp.name | |
| except Exception as e: | |
| print(f"Error generating AI image: {e}") | |
| #release_torch_resources() | |
| gc.collect() | |
| return None | |
| def generate_input_image_click(map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, randomize_seed=True, seed=None, use_conditioned_image=False, strength=0.5, image_format="16:9", scale_factor=(8/3), progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, constants.MAX_SEED) | |
| # Get the model and LoRA weights | |
| model, lora_weights = get_model_and_lora(model_textbox_value) | |
| global current_prerendered_image | |
| conditioned_image=None | |
| if use_conditioned_image: | |
| print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n") | |
| # ensure the conditioned image is an image and not a string, cannot use RGBA | |
| if isinstance(current_prerendered_image.value, str): | |
| conditioned_image = open_image(current_prerendered_image.value).convert("RGB") | |
| print(f"Conditioned Image: {conditioned_image.size}.. converted to RGB\n") | |
| # Convert image_format from a string split by ":" into two numbers divided | |
| width_ratio, height_ratio = map(int, image_format.split(":")) | |
| aspect_ratio = width_ratio / height_ratio | |
| width, height = convert_ratio_to_dimensions(aspect_ratio, 576) | |
| pipeline = "FluxPipeline" | |
| if conditioned_image is not None: | |
| pipeline = "FluxImg2ImgPipeline" | |
| # Generate the AI image and get the image path | |
| image_path = generate_ai_image_local( | |
| map_option, | |
| prompt_textbox_value, | |
| negative_prompt_textbox_value, | |
| model, | |
| lora_weights, | |
| conditioned_image, | |
| strength=strength, | |
| height=height, | |
| width=width, | |
| seed=seed, | |
| pipeline_name=pipeline, | |
| ) | |
| # Open the generated image | |
| try: | |
| image = Image.open(image_path).convert("RGBA") | |
| except Exception as e: | |
| print(f"Failed to open generated image: {e}") | |
| return image_path # Return the original image path if opening fails | |
| # Upscale the image | |
| upscaled_image = upscale_image(image, scale_factor) | |
| # Save the upscaled image to a temporary file | |
| with NamedTemporaryFile(delete=False, suffix=".png") as tmp_upscaled: | |
| upscaled_image.save(tmp_upscaled.name, format="PNG") | |
| constants.temp_files.append(tmp_upscaled.name) | |
| print(f"Upscaled image saved to {tmp_upscaled.name}") | |
| # Return the path of the upscaled image | |
| return tmp_upscaled.name | |
| def update_prompt_visibility(map_option): | |
| is_visible = (map_option == "Prompt") | |
| return ( | |
| gr.update(visible=is_visible), | |
| gr.update(visible=is_visible), | |
| gr.update(visible=is_visible) | |
| ) | |
| def update_prompt_notes(model_textbox_value): | |
| return upd_prompt_notes(model_textbox_value) | |
| def on_prerendered_gallery_selection(event_data: gr.SelectData): | |
| global current_prerendered_image | |
| selected_index = event_data.index | |
| selected_image = constants.pre_rendered_maps_paths[selected_index] | |
| print(f"Gallery Image Selected: {selected_image}\n") | |
| current_prerendered_image.value = selected_image | |
| return current_prerendered_image | |
| def combine_images_with_lerp(input_image, output_image, alpha): | |
| in_image = open_image(input_image) | |
| out_image = open_image(output_image) | |
| print(f"Combining images with alpha: {alpha}") | |
| return lerp_imagemath(in_image, out_image, alpha) | |
| def add_border(image, mask_width, mask_height, blank_color): | |
| #install_torch() | |
| bordered_image_output = Image.open(image).convert("RGBA") | |
| margin_color = detect_color_format(blank_color) | |
| print(f"Adding border to image with width: {mask_width}, height: {mask_height}, color: {margin_color}") | |
| return shrink_and_paste_on_blank(bordered_image_output, mask_width, mask_height, margin_color) | |
| def getVersions(): | |
| return versions_html() | |
| generate_input_image_click.zerogpu = True | |
| def main(debug=False): | |
| title = "HexaGrid Creator" | |
| #description = "Customizable Hexagon Grid Image Generator" | |
| examples = [["assets//examples//hex_map_p1.png", 32, 1, 0, 0, 0, 0, 0, "#ede9ac44","#12165380", True]] | |
| gr.set_static_paths(paths=["images/","images/images","images/prerendered","LUT/","fonts/"]) | |
| # Gradio Blocks Interface | |
| with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty') as beeuty: | |
| with gr.Row(): | |
| gr.Markdown(""" | |
| # HexaGrid Creator | |
| ## Transform Your Images into Mesmerizing Hexagon Grid Masterpieces! ⬢""", elem_classes="intro") | |
| with gr.Row(): | |
| with gr.Accordion("Welcome to HexaGrid Creator, the ultimate tool for transforming your images into stunning hexagon grid artworks. Whether you're a tabletop game enthusiast, a digital artist, or someone who loves unique patterns, HexaGrid Creator has something for you.", open=False, elem_classes="intro"): | |
| gr.Markdown (""" | |
| ## Drop an image into the Input Image and get started! | |
| ## What is HexaGrid Creator? | |
| HexaGrid Creator is a web-based application that allows you to apply a hexagon grid overlay to any image. You can customize the size, color, and opacity of the hexagons, as well as the background and border colors. The result is a visually striking image that looks like it was made from hexagonal tiles! | |
| ### What Can You Do? | |
| - **Generate Hexagon Grids:** Create beautiful hexagon grid overlays on any image with fully customizable parameters. | |
| - **AI-Powered Image Generation:** Use advanced AI models to generate images based on your prompts and apply hexagon grids to them. | |
| - **Color Exclusion:** Select and exclude specific colors from your hexagon grid for a cleaner and more refined look. | |
| - **Interactive Customization:** Adjust hexagon size, border size, rotation, background color, and more in real-time. | |
| - **Depth and 3D Model Generation:** Generate depth maps and 3D models from your images for enhanced visualization. | |
| - **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement. | |
| - **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization. | |
| - **Add Margins:** Add customizable margins around your images for a polished finish. | |
| ### Why You'll Love It | |
| - **Fun and Easy to Use:** With an intuitive interface and real-time previews, creating hexagon grids has never been this fun! | |
| - **Endless Creativity:** Unleash your creativity with endless customization options and see your images transform in unique ways. | |
| - **Hexagon-Inspired Theme:** Enjoy a delightful yellow and purple theme inspired by hexagons! ⬢ | |
| - **Advanced AI Models:** Leverage advanced AI models and LoRA weights for high-quality image generation and customization. | |
| ### Get Started | |
| 1. **Upload or Generate an Image:** Start by uploading your own image or generate one using our AI-powered tool. | |
| 2. **Customize Your Grid:** Play around with the settings to create the perfect hexagon grid overlay. | |
| 3. **Download and Share:** Once you're happy with your creation, download it and share it with the world! | |
| ### Advanced Features | |
| - **Generative AI Integration:** Utilize models like `black-forest-labs/FLUX.1-dev` and various LoRA weights for generating unique images. | |
| - **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization. | |
| - **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement. | |
| - **Depth and 3D Model Generation:** Create depth maps and 3D models from your images for enhanced visualization. | |
| - **Add Margins:** Customize margins around your images for a polished finish. | |
| Join the hive and start creating with HexaGrid Creator today! | |
| """, elem_classes="intro") | |
| with gr.Row(): | |
| from utils.image_utils import convert_to_rgba_png | |
| # Existing code | |
| with gr.Column(scale=2): | |
| input_image = gr.Image( | |
| label="Input Image", | |
| type="filepath", | |
| interactive=True, | |
| elem_classes="centered solid imgcontainer", | |
| key="imgInput", | |
| image_mode=None, | |
| format="PNG", | |
| show_download_button=True, | |
| ) | |
| # New code to convert input image to RGBA PNG | |
| def on_input_image_change(image_path): | |
| if image_path is None: | |
| gr.Warning("Please upload an Input Image to get started.") | |
| return None | |
| img, img_path = convert_to_rgba_png(image_path) | |
| return img_path | |
| input_image.change( | |
| fn=on_input_image_change, | |
| inputs=[input_image], | |
| outputs=[input_image], scroll_to_output=True, | |
| ) | |
| with gr.Column(): | |
| with gr.Accordion("Hex Coloring and Exclusion", open = False): | |
| with gr.Row(): | |
| with gr.Column(): | |
| color_picker = gr.ColorPicker(label="Pick a color to exclude",value="#505050") | |
| with gr.Column(): | |
| filter_color = gr.Checkbox(label="Filter Excluded Colors from Sampling", value=False,) | |
| exclude_color_button = gr.Button("Exclude Color", elem_id="exlude_color_button", elem_classes="solid") | |
| color_display = gr.DataFrame(label="List of Excluded RGBA Colors", headers=["R", "G", "B", "A"], elem_id="excluded_colors", type="array", value=build_dataframe(excluded_color_list), interactive=True, elem_classes="solid centered") | |
| selected_row = gr.Number(0, label="Selected Row", visible=False) | |
| delete_button = gr.Button("Delete Row", elem_id="delete_exclusion_button", elem_classes="solid") | |
| fill_hex = gr.Checkbox(label="Fill Hex with color from Image", value=True) | |
| with gr.Accordion("Image Filters", open = False): | |
| with gr.Row(): | |
| with gr.Column(): | |
| composite_color = gr.ColorPicker(label="Color", value="#ede9ac44") | |
| with gr.Column(): | |
| composite_opacity = gr.Slider(label="Opacity %", minimum=0, maximum=100, value=50, interactive=True) | |
| with gr.Row(): | |
| composite_button = gr.Button("Composite", elem_classes="solid") | |
| with gr.Row(): | |
| with gr.Column(): | |
| lut_filename = gr.Textbox( | |
| value="", | |
| label="Look Up Table (LUT) File Name", | |
| elem_id="lutFileName") | |
| with gr.Column(): | |
| lut_file = gr.File( | |
| value=None, | |
| file_count="single", | |
| file_types=[".cube"], | |
| type="filepath", | |
| label="LUT cube File") | |
| with gr.Row(): | |
| lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=constants.default_lut_example_img) | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown(""" | |
| ### Included Filters (LUTs) | |
| There are several included Filters: | |
| Try them on the example image before applying to your Input Image. | |
| """, elem_id="lut_markdown") | |
| with gr.Column(): | |
| gr.Examples(elem_id="lut_examples", | |
| examples=[[f] for f in constants.lut_files], | |
| inputs=[lut_filename], | |
| outputs=[lut_filename], | |
| label="Select a Filter (LUT) file. Populate the LUT File Name field" | |
| ) | |
| with gr.Row(): | |
| apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button") | |
| lut_file.change(get_filename, inputs=[lut_file], outputs=[lut_filename]) | |
| lut_filename.change(show_lut, inputs=[lut_filename, lut_example_image], outputs=[lut_example_image]) | |
| apply_lut_button.click( | |
| lambda lut_filename, input_image: gr.Warning("Please upload an Input Image to get started.") if input_image is None else apply_lut_to_image_path(lut_filename, input_image)[0], | |
| inputs=[lut_filename, input_image], | |
| outputs=[input_image], | |
| scroll_to_output=True | |
| ) | |
| with gr.Row(): | |
| with gr.Accordion("Generative AI", open = False): | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_options = gr.Dropdown( | |
| label="Model Options", | |
| choices=constants.MODELS + constants.LORA_WEIGHTS + ["Manual Entry"], | |
| value="Cossale/Frames2-Flex.1", | |
| elem_classes="solid" | |
| ) | |
| model_textbox = gr.Textbox( | |
| label="LORA/Model", | |
| value="Cossale/Frames2-Flex.1", | |
| elem_classes="solid", | |
| elem_id="inference_model", | |
| visible=False | |
| ) | |
| # Update map_options to a Dropdown with choices from constants.PROMPTS keys | |
| with gr.Row(): | |
| with gr.Column(): | |
| map_options = gr.Dropdown( | |
| label="Map Options", | |
| choices=list(constants.PROMPTS.keys()), | |
| value="Alien Landscape", | |
| elem_classes="solid", | |
| scale=0 | |
| ) | |
| with gr.Column(): | |
| # Add Dropdown for sizing of Images, height and width based on selection. Options are 16x9, 16x10, 4x5, 1x1 | |
| # The values of height and width are based on common resolutions for each aspect ratio | |
| # Default to 16x9, 912x512 | |
| image_size_ratio = gr.Dropdown(label="Image Size", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value", scale=0, interactive=True) | |
| with gr.Column(): | |
| seed_slider = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=constants.MAX_SEED, | |
| step=1, | |
| value=0, | |
| scale=0 | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True, scale=0, interactive=True) | |
| prompt_textbox = gr.Textbox( | |
| label="Prompt", | |
| visible=False, | |
| elem_classes="solid", | |
| value="top-down, (rectangular tabletop_map) alien planet map, Battletech_boardgame scifi world with forests, lakes, oceans, continents and snow at the top and bottom, (middle is dark, no_reflections, no_shadows), from directly above. From 100,000 feet looking straight down", | |
| lines=4 | |
| ) | |
| negative_prompt_textbox = gr.Textbox( | |
| label="Negative Prompt", | |
| visible=False, | |
| elem_classes="solid", | |
| value="Earth, low quality, bad anatomy, blurry, cropped, worst quality, shadows, people, humans, reflections, shadows, realistic map of the Earth, isometric, text" | |
| ) | |
| prompt_notes_label = gr.Label( | |
| "You should use FRM$ as trigger words. @1.5 minutes", | |
| elem_classes="solid centered small", | |
| show_label=False, | |
| visible=False | |
| ) | |
| # Keep the change event to maintain functionality | |
| map_options.change( | |
| fn=update_prompt_visibility, | |
| inputs=[map_options], | |
| outputs=[prompt_textbox, negative_prompt_textbox, prompt_notes_label] | |
| ) | |
| with gr.Row(): | |
| generate_input_image = gr.Button( | |
| "Generate AI Image", | |
| elem_id="generate_input_image", | |
| elem_classes="solid" | |
| ) | |
| with gr.Column(scale=2): | |
| with gr.Accordion("Template Image Styles", open = False): | |
| with gr.Row(): | |
| # Gallery from PRE_RENDERED_IMAGES GOES HERE | |
| prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images(constants.pre_rendered_maps_paths), elem_id="gallery", elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto", format="png",allow_preview=False) | |
| with gr.Row(): | |
| image_guidance_stength = gr.Slider(label="Image Guidance Strength (prompt <-> image)", minimum=0, maximum=1.0, value=0.5, step=0.01, interactive=True) | |
| with gr.Column(): | |
| replace_input_image_button = gr.Button( | |
| "Replace Input Image", | |
| elem_id="prerendered_replace_input_image_button", | |
| elem_classes="solid" | |
| ) | |
| with gr.Column(): | |
| generate_input_image_from_gallery = gr.Button( | |
| "Generate AI Image from Gallery", | |
| elem_id="generate_input_image_from_gallery", | |
| elem_classes="solid" | |
| ) | |
| with gr.Accordion("Advanced Hexagon Settings", open = False): | |
| with gr.Row(): | |
| start_x = gr.Number(label="Start X", value=0, minimum=-512, maximum= 512, precision=0) | |
| start_y = gr.Number(label="Start Y", value=0, minimum=-512, maximum= 512, precision=0) | |
| end_x = gr.Number(label="End X", value=0, minimum=-512, maximum= 512, precision=0) | |
| end_y = gr.Number(label="End Y", value=0, minimum=-512, maximum= 512, precision=0) | |
| with gr.Row(): | |
| x_spacing = gr.Number(label="Adjust Horizontal spacing", value=-1, minimum=-200, maximum=200, precision=1) | |
| y_spacing = gr.Number(label="Adjust Vertical spacing", value=1, minimum=-200, maximum=200, precision=1) | |
| with gr.Row(): | |
| rotation = gr.Slider(-90, 180, 0.0, 0.1, label="Hexagon Rotation (degree)") | |
| add_hex_text = gr.Dropdown(label="Add Text to Hexagons", choices=[None, "Row-Column Coordinates", "Sequential Numbers", "Playing Cards Sequential", "Playing Cards Alternate Red and Black", "Custom List"], value=None) | |
| with gr.Row(): | |
| custom_text_list = gr.TextArea(label="Custom Text List", value=constants.cards_alternating, visible=False,) | |
| custom_text_color_list = gr.TextArea(label="Custom Text Color List", value=constants.card_colors_alternating, visible=False) | |
| with gr.Row(): | |
| hex_text_info = gr.Markdown(""" | |
| ### Text Color uses the Border Color and Border Opacity, unless you use a custom list. | |
| ### The Custom Text List and Custom Text Color List are comma separated lists. | |
| ### The custom color list is a comma separated list of hex colors. | |
| #### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue" | |
| """, elem_id="hex_text_info", visible=False) | |
| add_hex_text.change( | |
| fn=lambda x: ( | |
| gr.update(visible=(x == "Custom List")), | |
| gr.update(visible=(x == "Custom List")), | |
| gr.update(visible=(x != None)) | |
| ), | |
| inputs=add_hex_text, | |
| outputs=[custom_text_list, custom_text_color_list, hex_text_info] | |
| ) | |
| with gr.Row(): | |
| hex_size = gr.Number(label="Hexagon Size", value=32, minimum=1, maximum=768) | |
| border_size = gr.Slider(-5,25,value=0,step=1,label="Border Size") | |
| with gr.Row(): | |
| background_color = gr.ColorPicker(label="Background Color", value="#000000", interactive=True) | |
| background_opacity = gr.Slider(0,100,0,1,label="Background Opacity %") | |
| border_color = gr.ColorPicker(label="Border Color", value="#7b7b7b", interactive=True) | |
| border_opacity = gr.Slider(0,100,0,1,label="Border Opacity %") | |
| with gr.Row(): | |
| hex_button = gr.Button("Generate Hex Grid!", elem_classes="solid", elem_id="btn-generate") | |
| with gr.Row(): | |
| output_image = gr.Image(label="Hexagon Grid Image", image_mode = "RGBA", show_download_button=True, show_share_button=True,elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOutput") | |
| overlay_image = gr.Image(label="Hexagon Overlay Image", image_mode = "RGBA", show_share_button=True, elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOverlay") | |
| with gr.Row(): | |
| output_overlay_composite = gr.Slider(0,100,50,0.5, label="Interpolate Intensity") | |
| output_blend_multiply_composite = gr.Slider(0,100,50,0.5, label="Overlay Intensity") | |
| output_alpha_composite = gr.Slider(0,100,50,0.5, label="Alpha Composite Intensity") | |
| with gr.Accordion("Add Margins (bleed)", open=False): | |
| with gr.Row(): | |
| border_image_source = gr.Radio(label="Add Margins around which Image", choices=["Input Image", "Overlay Image"], value="Overlay Image") | |
| with gr.Row(): | |
| mask_width = gr.Number(label="Margins Width", value=10, minimum=0, maximum=100, precision=0) | |
| mask_height = gr.Number(label="Margins Height", value=10, minimum=0, maximum=100, precision=0) | |
| with gr.Row(): | |
| margin_color = gr.ColorPicker(label="Margin Color", value="#333333FF", interactive=True) | |
| margin_opacity = gr.Slider(0,100,95,0.5,label="Margin Opacity %") | |
| with gr.Row(): | |
| add_border_button = gr.Button("Add Margins", elem_classes="solid", variant="secondary") | |
| with gr.Row(): | |
| bordered_image_output = gr.Image(label="Image with Margins", image_mode="RGBA", show_download_button=True, show_share_button=True, elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgBordered") | |
| with gr.Accordion("Height Maps and 3D", open = False): | |
| with gr.Row(): | |
| with gr.Column(): | |
| voxel_size_factor = gr.Slider(label="Voxel Size Factor", value=1.00, minimum=0.01, maximum=40.00, step=0.01) | |
| with gr.Column(): | |
| depth_image_source = gr.Radio(label="Depth Image Source", choices=["Input Image", "Output Image", "Overlay Image","Image with Margins"], value="Input Image") | |
| with gr.Row(): | |
| generate_depth_button = gr.Button("Generate Depth Map and 3D Model From Selected Image", elem_classes="solid", variant="secondary") | |
| with gr.Row(): | |
| depth_map_output = gr.Image(label="Depth Map", image_mode="L", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgDepth") | |
| model_output = gr.Model3D(label="3D Model", clear_color=[1.0, 1.0, 1.0, 0.25], key="Img3D", elem_classes="centered solid imgcontainer") | |
| with gr.Row(): | |
| gr.Examples(examples=[ | |
| ["assets//examples//hex_map_p1.png", False, True, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 15], | |
| ["assets//examples//hex_map_p1_overlayed.png", False, False, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 75], | |
| ["assets//examples//hex_flower_logo.png", False, True, -95,-95,100,100,-24,-2,190,30,2,"#FF8951", 50], | |
| ["assets//examples//hexed_fract_1.png", False, True, 0,0,0,0,0,0,10,0,0,"#000000", 5], | |
| ["assets//examples//tmpzt3mblvk.png", False, True, -20,10,0,0,-6,-2,35,30,1,"#ffffff", 0], | |
| ], | |
| inputs=[input_image, filter_color, fill_hex, start_x, start_y, end_x, end_y, x_spacing, y_spacing, hex_size, rotation, border_size, border_color, border_opacity], | |
| elem_id="examples") | |
| with gr.Row(): | |
| gr.HTML(value=getVersions(), visible=True, elem_id="versions") | |
| # with gr.Row(): | |
| # reinstall_torch = gr.Button("Reinstall Torch", elem_classes="solid small", variant="secondary") | |
| # reinstall_cuda_toolkit = gr.Button("Install CUDA Toolkit", elem_classes="solid small", variant="secondary") | |
| # reinitialize_cuda = gr.Button("Reinitialize CUDA", elem_classes="solid small", variant="secondary") | |
| # torch_release = gr.Button("Release Torch Resources", elem_classes="solid small", variant="secondary") | |
| # reinitialize_cuda.click( | |
| # fn=initialize_cuda, | |
| # inputs=[], | |
| # outputs=[] | |
| # ) | |
| # torch_release.click( | |
| # fn=release_torch_resources, | |
| # inputs=[], | |
| # outputs=[] | |
| # ) | |
| # reinstall_torch.click( | |
| # fn=install_torch, | |
| # inputs=[], | |
| # outputs=[] | |
| # ) | |
| # reinstall_cuda_toolkit.click( | |
| # fn=install_cuda_toolkit, | |
| # inputs=[], | |
| # outputs=[] | |
| # ) | |
| color_display.select(on_color_display_select,inputs=[color_display], outputs=[selected_row]) | |
| color_display.input(on_input,inputs=[color_display], outputs=[color_display, gr.State(excluded_color_list)]) | |
| delete_button.click(fn=delete_color, inputs=[selected_row, color_display], outputs=[color_display]) | |
| exclude_color_button.click(fn=add_color, inputs=[color_picker, gr.State(excluded_color_list)], outputs=[color_display, gr.State(excluded_color_list)]) | |
| hex_button.click( | |
| fn=lambda hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list: | |
| gr.Warning("Please upload an Input Image to get started.") if input_image is None else hex_create(hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list), | |
| inputs=[hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list], | |
| outputs=[output_image, overlay_image], | |
| scroll_to_output=True | |
| ) | |
| generate_input_image.click( | |
| fn=generate_input_image_click, | |
| inputs=[map_options, prompt_textbox, negative_prompt_textbox, model_textbox, randomize_seed, seed_slider, gr.State(False), gr.State(0.5), image_size_ratio], | |
| outputs=[input_image], scroll_to_output=True | |
| ) | |
| generate_depth_button.click( | |
| fn=generate_depth_button_click, | |
| inputs=[depth_image_source, voxel_size_factor, input_image, output_image, overlay_image, bordered_image_output], | |
| outputs=[depth_map_output, model_output], scroll_to_output=True | |
| ) | |
| model_textbox.change( | |
| fn=update_prompt_notes, | |
| inputs=model_textbox, | |
| outputs=prompt_notes_label,preprocess=False | |
| ) | |
| model_options.change( | |
| fn=lambda x: (gr.update(visible=(x == "Manual Entry")), gr.update(value=x) if x != "Manual Entry" else gr.update()), | |
| inputs=model_options, | |
| outputs=[model_textbox, model_textbox] | |
| ) | |
| model_options.change( | |
| fn=update_prompt_notes, | |
| inputs=model_options, | |
| outputs=prompt_notes_label | |
| ) | |
| composite_button.click( | |
| fn=lambda input_image, composite_color, composite_opacity: gr.Warning("Please upload an Input Image to get started.") if input_image is None else change_color(input_image, composite_color, composite_opacity), | |
| inputs=[input_image, composite_color, composite_opacity], | |
| outputs=[input_image] | |
| ) | |
| #use conditioned_image as the input_image for generate_input_image_click | |
| generate_input_image_from_gallery.click( | |
| fn=generate_input_image_click, | |
| inputs=[map_options, prompt_textbox, negative_prompt_textbox, model_textbox,randomize_seed, seed_slider, gr.State(True), image_guidance_stength, image_size_ratio], | |
| outputs=[input_image], scroll_to_output=True | |
| ) | |
| # Update the state variable with the prerendered image filepath when an image is selected | |
| prerendered_image_gallery.select( | |
| fn=on_prerendered_gallery_selection, | |
| inputs=None, | |
| outputs=[gr.State(current_prerendered_image)], # Update the state with the selected image | |
| show_api=False | |
| ) | |
| # replace input image with selected gallery image | |
| replace_input_image_button.click( | |
| lambda: current_prerendered_image.value, | |
| inputs=None, | |
| outputs=[input_image], scroll_to_output=True | |
| ) | |
| output_overlay_composite.change( | |
| fn=combine_images_with_lerp, | |
| inputs=[input_image, output_image, output_overlay_composite], | |
| outputs=[overlay_image], scroll_to_output=True | |
| ) | |
| output_blend_multiply_composite.change( | |
| fn=multiply_and_blend_images, | |
| inputs=[input_image, output_image, output_blend_multiply_composite], | |
| outputs=[overlay_image], | |
| scroll_to_output=True | |
| ) | |
| output_alpha_composite.change( | |
| fn=alpha_composite_with_control, | |
| inputs=[input_image, output_image, output_alpha_composite], | |
| outputs=[overlay_image], | |
| scroll_to_output=True | |
| ) | |
| add_border_button.click( | |
| fn=lambda image_source, mask_w, mask_h, color, opacity, input_img, overlay_img: add_border(input_img if image_source == "Input Image" else overlay_img, mask_w, mask_h, update_color_opacity(detect_color_format(color), opacity * 2.55)), | |
| inputs=[border_image_source, mask_width, mask_height, margin_color, margin_opacity, input_image, overlay_image], | |
| outputs=[bordered_image_output], | |
| scroll_to_output=True | |
| ) | |
| beeuty.queue(default_concurrency_limit=2,max_size=12,api_open=False) | |
| beeuty.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered"], favicon_path="./assets/favicon.ico", max_file_size="10mb") | |
| if __name__ == "__main__": | |
| logging.basicConfig( | |
| format="[%(levelname)s] %(asctime)s %(message)s", level=logging.INFO | |
| ) | |
| logging.info("Environment Variables: %s" % os.environ) | |
| # if _get_output(["nvcc", "--version"]) is None: | |
| # logging.info("Installing CUDA toolkit...") | |
| # install_cuda_toolkit() | |
| # else: | |
| # logging.info("Detected CUDA: %s" % _get_output(["nvcc", "--version"])) | |
| # logging.info("Installing CUDA extensions...") | |
| # setup_runtime_env() | |
| #main(os.getenv("DEBUG") == "1") | |
| main() |