Spaces:
Running
on
Zero
Running
on
Zero
| # utils/image_utils.py | |
| import os | |
| from io import BytesIO | |
| import base64 | |
| import numpy as np | |
| #from decimal import ROUND_CEILING | |
| from PIL import Image, ImageChops, ImageDraw, ImageEnhance, ImageFilter, ImageDraw, ImageOps, ImageMath | |
| from typing import List, Union | |
| #import numpy as np | |
| #import math | |
| from utils.constants import default_lut_example_img | |
| from utils.color_utils import ( | |
| detect_color_format, | |
| update_color_opacity | |
| ) | |
| from utils.misc import (pause) | |
| def open_image(image_path): | |
| """ | |
| Opens an image from a file path or URL, or decodes a DataURL string into an image. | |
| Parameters: | |
| image_path (str): The file path, URL, or DataURL string of the image to open. | |
| Returns: | |
| Image: A PIL Image object of the opened image. | |
| Raises: | |
| Exception: If there is an error opening the image. | |
| """ | |
| import requests | |
| try: | |
| # Strip leading and trailing double quotation marks, if present | |
| image_path = image_path.strip('"') | |
| if image_path.startswith('http'): | |
| # If the image path is a URL, download the image using requests | |
| response = requests.get(image_path) | |
| img = Image.open(BytesIO(response.content)) | |
| elif image_path.startswith('data'): | |
| # If the image path is a DataURL, decode the base64 string | |
| encoded_data = image_path.split(',')[1] | |
| decoded_data = base64.b64decode(encoded_data) | |
| img = Image.open(BytesIO(decoded_data)) | |
| else: | |
| # Assume that the image path is a file path | |
| img = Image.open(image_path) | |
| except Exception as e: | |
| raise Exception(f'Error opening image: {e}') | |
| return img | |
| def build_prerendered_images(images_list): | |
| """ | |
| Opens a list of images from file paths, URLs, or DataURL strings. | |
| Parameters: | |
| images_list (list): A list of file paths, URLs, or DataURL strings of the images to open. | |
| Returns: | |
| list: A list of PIL Image objects of the opened images. | |
| """ | |
| return [open_image(image) for image in images_list] | |
| def build_encoded_images(images_list): | |
| """ | |
| Encodes a list of images to base64 strings. | |
| Parameters: | |
| images_list (list): A list of file paths, URLs, DataURL strings, or PIL Image objects of the images to encode. | |
| Returns: | |
| list: A list of base64-encoded strings of the images. | |
| """ | |
| return [image_to_base64(image) for image in images_list] | |
| def image_to_base64(image): | |
| """ | |
| Encodes an image to a base64 string. | |
| Parameters: | |
| image (str or PIL.Image.Image): The file path, URL, DataURL string, or PIL Image object of the image to encode. | |
| Returns: | |
| str: A base64-encoded string of the image. | |
| """ | |
| buffered = BytesIO() | |
| if type(image) is str: | |
| image = open_image(image) | |
| image.save(buffered, format="PNG") | |
| return "data:image/png;base64," + base64.b64encode(buffered.getvalue()).decode() | |
| def change_color(image, color, opacity=0.75): | |
| """ | |
| Changes the color of an image by overlaying it with a specified color and opacity. | |
| Parameters: | |
| image (str or PIL.Image.Image): The file path, URL, DataURL string, or PIL Image object of the image to change. | |
| color (str or tuple): The color to overlay on the image. | |
| opacity (float): The opacity of the overlay color (0.0 to 1.0). | |
| Returns: | |
| PIL.Image.Image: The image with the color changed. | |
| """ | |
| if type(image) is str: | |
| image = open_image(image) | |
| try: | |
| # Convert the color to RGBA format | |
| rgba_color = detect_color_format(color) | |
| rgba_color = update_color_opacity(rgba_color, opacity) | |
| # Convert the image to RGBA mode | |
| image = image.convert("RGBA") | |
| # Create a new image with the same size and mode | |
| new_image = Image.new("RGBA", image.size, rgba_color) | |
| # Composite the new image with the original image | |
| result = Image.alpha_composite(image, new_image) | |
| except Exception as e: | |
| print(f"Error changing color: {e}") | |
| return image | |
| return result | |
| def convert_str_to_int_or_zero(value): | |
| """ | |
| Converts a string to an integer, or returns zero if the conversion fails. | |
| Parameters: | |
| value (str): The string to convert. | |
| Returns: | |
| int: The converted integer, or zero if the conversion fails. | |
| """ | |
| try: | |
| return int(value) | |
| except ValueError: | |
| return 0 | |
| def upscale_image(image, scale_factor): | |
| """ | |
| Upscales an image by a given scale factor using the LANCZOS filter. | |
| Parameters: | |
| image (PIL.Image.Image): The input image to be upscaled. | |
| scale_factor (float): The factor by which to upscale the image. | |
| Returns: | |
| PIL.Image.Image: The upscaled image. | |
| """ | |
| # Calculate the new size | |
| new_width = int(image.width * scale_factor) | |
| new_height = int(image.height * scale_factor) | |
| # Upscale the image using the LANCZOS filter | |
| upscaled_image = image.resize((new_width, new_height), Image.LANCZOS) | |
| return upscaled_image | |
| def crop_and_resize_image(image, width, height): | |
| """ | |
| Crops the image to a centered square and resizes it to the specified width and height. | |
| Parameters: | |
| image (PIL.Image.Image): The input image to be cropped and resized. | |
| width (int): The desired width of the output image. | |
| height (int): The desired height of the output image. | |
| Returns: | |
| PIL.Image.Image: The cropped and resized image. | |
| """ | |
| # Get original dimensions | |
| original_width, original_height = image.size | |
| # Determine the smaller dimension to make a square crop | |
| min_dim = min(original_width, original_height) | |
| # Calculate coordinates for cropping to a centered square | |
| left = (original_width - min_dim) // 2 | |
| top = (original_height - min_dim) // 2 | |
| right = left + min_dim | |
| bottom = top + min_dim | |
| # Crop the image | |
| cropped_image = image.crop((left, top, right, bottom)) | |
| # Resize the image to the desired dimensions | |
| resized_image = cropped_image.resize((width, height), Image.LANCZOS) | |
| return resized_image | |
| def resize_image_with_aspect_ratio(image, target_width, target_height): | |
| """ | |
| Resizes the image to fit within the target dimensions while maintaining aspect ratio. | |
| If the aspect ratio does not match, the image will be padded with black pixels. | |
| Parameters: | |
| image (PIL.Image.Image): The input image to be resized. | |
| target_width (int): The target width. | |
| target_height (int): The target height. | |
| Returns: | |
| PIL.Image.Image: The resized image. | |
| """ | |
| # Calculate aspect ratios | |
| original_width, original_height = image.size | |
| target_aspect = target_width / target_height | |
| original_aspect = original_width / original_height | |
| # Decide whether to fit width or height | |
| if original_aspect > target_aspect: | |
| # Image is wider than target aspect ratio | |
| new_width = target_width | |
| new_height = int(target_width / original_aspect) | |
| else: | |
| # Image is taller than target aspect ratio | |
| new_height = target_height | |
| new_width = int(target_height * original_aspect) | |
| # Resize the image | |
| resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
| # Create a new image with target dimensions and black background | |
| new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0)) | |
| # Paste the resized image onto the center of the new image | |
| paste_x = (target_width - new_width) // 2 | |
| paste_y = (target_height - new_height) // 2 | |
| new_image.paste(resized_image, (paste_x, paste_y)) | |
| return new_image | |
| def lerp_imagemath(img1, img2, alpha_percent: int = 50): | |
| """ | |
| Performs linear interpolation (LERP) between two images based on the given alpha value. | |
| Parameters: | |
| img1 (str or PIL.Image.Image): The first image or its file path. | |
| img2 (str or PIL.Image.Image): The second image or its file path. | |
| alpha (int): The interpolation factor (0 to 100). | |
| Returns: | |
| PIL.Image.Image: The interpolated image. | |
| """ | |
| if isinstance(img1, str): | |
| img1 = open_image(img1) | |
| if isinstance(img2, str): | |
| img2 = open_image(img2) | |
| # Ensure both images are in the same mode (e.g., RGBA) | |
| img1 = img1.convert('RGBA') | |
| img2 = img2.convert('RGBA') | |
| # Convert images to NumPy arrays | |
| arr1 = np.array(img1, dtype=np.float32) | |
| arr2 = np.array(img2, dtype=np.float32) | |
| # Perform linear interpolation | |
| alpha = alpha_percent / 100.0 | |
| result_arr = (arr1 * (1 - alpha)) + (arr2 * alpha) | |
| # Convert the result back to a PIL image | |
| result_img = Image.fromarray(np.uint8(result_arr)) | |
| #result_img.show() | |
| return result_img | |
| def shrink_and_paste_on_blank(current_image, mask_width, mask_height, blank_color:tuple[int, int, int, int] = (0,0,0,0)): | |
| """ | |
| Decreases size of current_image by mask_width pixels from each side, | |
| then adds a mask_width width transparent frame, | |
| so that the image the function returns is the same size as the input. | |
| Parameters: | |
| current_image (PIL.Image.Image): The input image to transform. | |
| mask_width (int): Width in pixels to shrink from each side. | |
| mask_height (int): Height in pixels to shrink from each side. | |
| blank_color (tuple): The color of the blank frame (default is transparent). | |
| Returns: | |
| PIL.Image.Image: The transformed image. | |
| """ | |
| # calculate new dimensions | |
| width, height = current_image.size | |
| new_width = width - (2 * mask_width) | |
| new_height = height - (2 * mask_height) | |
| # resize and paste onto blank image | |
| prev_image = current_image.resize((new_width, new_height)) | |
| blank_image = Image.new("RGBA", (width, height), blank_color) | |
| blank_image.paste(prev_image, (mask_width, mask_height)) | |
| return blank_image | |
| def multiply_and_blend_images(base_image, image2, alpha_percent=50): | |
| """ | |
| Multiplies two images and blends the result with the original image. | |
| Parameters: | |
| image1 (PIL.Image.Image): The first input image. | |
| image2 (PIL.Image.Image): The second input image. | |
| alpha (float): The blend factor (0.0 to 100.0) for blending the multiplied result with the original image. | |
| Returns: | |
| PIL.Image.Image: The blended image. | |
| """ | |
| alpha = alpha_percent / 100.0 | |
| if isinstance(base_image, str): | |
| base_image = open_image(base_image) | |
| if isinstance(image2, str): | |
| image2 = open_image(image2) | |
| # Ensure both images are in the same mode and size | |
| base_image = base_image.convert('RGBA') | |
| image2 = image2.convert('RGBA') | |
| image2 = image2.resize(base_image.size) | |
| # Multiply the images | |
| multiplied_image = ImageChops.multiply(base_image, image2) | |
| # Blend the multiplied result with the original | |
| blended_image = Image.blend(base_image, multiplied_image, alpha) | |
| return blended_image | |
| def alpha_composite_with_control(base_image, image_with_alpha, alpha_percent=100): | |
| """ | |
| Overlays image_with_alpha onto base_image with controlled alpha transparency. | |
| Parameters: | |
| base_image (PIL.Image.Image): The base image. | |
| image_with_alpha (PIL.Image.Image): The image to overlay with an alpha channel. | |
| alpha_percent (float): The multiplier for the alpha channel (0.0 to 100.0). | |
| Returns: | |
| PIL.Image.Image: The resulting image after alpha compositing. | |
| """ | |
| alpha_multiplier = alpha_percent / 100.0 | |
| if isinstance(base_image, str): | |
| base_image = open_image(base_image) | |
| if isinstance(image_with_alpha, str): | |
| image_with_alpha = open_image(image_with_alpha) | |
| # Ensure both images are in RGBA mode | |
| base_image = base_image.convert('RGBA') | |
| image_with_alpha = image_with_alpha.convert('RGBA') | |
| # Extract the alpha channel and multiply by alpha_multiplier | |
| alpha_channel = image_with_alpha.split()[3] | |
| alpha_channel = alpha_channel.point(lambda p: p * alpha_multiplier) | |
| # Apply the modified alpha channel back to the image | |
| image_with_alpha.putalpha(alpha_channel) | |
| # Composite the images | |
| result = Image.alpha_composite(base_image, image_with_alpha) | |
| return result | |
| def apply_alpha_mask(image, mask_image, invert = False): | |
| """ | |
| Applies a mask image as the alpha channel of the input image. | |
| Parameters: | |
| image (PIL.Image.Image): The image to apply the mask to. | |
| mask_image (PIL.Image.Image): The alpha mask to apply. | |
| invert (bool): Whether to invert the mask (default is False). | |
| Returns: | |
| PIL.Image.Image: The image with the applied alpha mask. | |
| """ | |
| # Resize the mask to match the current image size | |
| mask_image = resize_and_crop_image(mask_image, image.width, image.height).convert('L') # convert to grayscale | |
| if invert: | |
| mask_image = ImageOps.invert(mask_image) | |
| # Apply the mask as the alpha layer of the current image | |
| result_image = image.copy() | |
| result_image.putalpha(mask_image) | |
| return result_image | |
| def resize_and_crop_image(image: Image, new_width: int = 512, new_height: int = 512) -> Image: | |
| """ | |
| Resizes and crops an image to a specified width and height. This ensures that the entire new_width and new_height | |
| dimensions are filled by the image, and the aspect ratio is maintained. | |
| Parameters: | |
| image (PIL.Image.Image): The image to be resized and cropped. | |
| new_width (int): The desired width of the new image (default is 512). | |
| new_height (int): The desired height of the new image (default is 512). | |
| Returns: | |
| PIL.Image.Image: The resized and cropped image. | |
| """ | |
| # Get the dimensions of the original image | |
| orig_width, orig_height = image.size | |
| # Calculate the aspect ratios of the original and new images | |
| orig_aspect_ratio = orig_width / float(orig_height) | |
| new_aspect_ratio = new_width / float(new_height) | |
| # Calculate the new size of the image while maintaining aspect ratio | |
| if orig_aspect_ratio > new_aspect_ratio: | |
| # The original image is wider than the new image, so we need to crop the sides | |
| resized_width = int(new_height * orig_aspect_ratio) | |
| resized_height = new_height | |
| left_offset = (resized_width - new_width) // 2 | |
| top_offset = 0 | |
| else: | |
| # The original image is taller than the new image, so we need to crop the top and bottom | |
| resized_width = new_width | |
| resized_height = int(new_width / orig_aspect_ratio) | |
| left_offset = 0 | |
| top_offset = (resized_height - new_height) // 2 | |
| # Resize the image with Lanczos resampling filter | |
| resized_image = image.resize((resized_width, resized_height), resample=Image.Resampling.LANCZOS) | |
| # Crop the image to fill the entire height and width of the new image | |
| cropped_image = resized_image.crop((left_offset, top_offset, left_offset + new_width, top_offset + new_height)) | |
| return cropped_image | |
| ##################################################### LUTs ############################################################ | |
| def is_3dlut_row(row: List[str]) -> bool: | |
| """ | |
| Check if one line in the file has exactly 3 numeric values. | |
| Parameters: | |
| row (list): A list of strings representing the values in a row. | |
| Returns: | |
| bool: True if the row has exactly 3 numeric values, False otherwise. | |
| """ | |
| try: | |
| row_values = [float(val) for val in row] | |
| return len(row_values) == 3 | |
| except ValueError: | |
| return False | |
| def read_lut(path_lut: Union[str, os.PathLike], num_channels: int = 3) -> ImageFilter.Color3DLUT: | |
| """ | |
| Read LUT from a raw file. | |
| Each line in the file is considered part of the LUT table. The function | |
| reads the file, parses the rows, and constructs a Color3DLUT object. | |
| Args: | |
| path_lut: A string or os.PathLike object representing the path to the LUT file. | |
| num_channels: An integer specifying the number of color channels in the LUT (default is 3). | |
| Returns: | |
| An instance of ImageFilter.Color3DLUT representing the LUT. | |
| Raises: | |
| FileNotFoundError: If the LUT file specified by path_lut does not exist. | |
| """ | |
| with open(path_lut) as f: | |
| lut_raw = f.read().splitlines() | |
| size = round(len(lut_raw) ** (1 / 3)) | |
| row2val = lambda row: tuple([float(val) for val in row.split(" ")]) | |
| lut_table = [row2val(row) for row in lut_raw if is_3dlut_row(row.split(" "))] | |
| return ImageFilter.Color3DLUT(size, lut_table, num_channels) | |
| def apply_lut(img: Image, lut_path: str = "", lut: ImageFilter.Color3DLUT = None) -> Image: | |
| """ | |
| Apply a LUT to an image and return a PIL Image with the LUT applied. | |
| The function applies the LUT to the input image using the filter() method of the PIL Image class. | |
| Args: | |
| img: A PIL Image object to which the LUT should be applied. | |
| lut_path: A string representing the path to the LUT file (optional if lut argument is provided). | |
| lut: An instance of ImageFilter.Color3DLUT representing the LUT (optional if lut_path is provided). | |
| Returns: | |
| A PIL Image object with the LUT applied. | |
| Raises: | |
| ValueError: If both lut_path and lut arguments are not provided. | |
| """ | |
| if lut is None: | |
| if lut_path == "": | |
| raise ValueError("Either lut_path or lut argument must be provided.") | |
| lut = read_lut(lut_path) | |
| return img.filter(lut) | |
| def show_lut(lut_filename: str, lut_example_image: Image = default_lut_example_img) -> Image: | |
| if lut_filename is not None: | |
| try: | |
| lut_example_image = apply_lut(lut_example_image, lut_filename) | |
| except Exception as e: | |
| print(f"BAD LUT: Error applying LUT {str(e)}.") | |
| else: | |
| lut_example_image = open_image(default_lut_example_img) | |
| return lut_example_image | |
| def convert_rgb_to_rgba_safe(image: Image) -> Image: | |
| """ | |
| Converts an RGB image to RGBA by adding an alpha channel. | |
| Ensures that the original image remains unaltered. | |
| Parameters: | |
| image (PIL.Image.Image): The RGB image to convert. | |
| Returns: | |
| PIL.Image.Image: The converted RGBA image. | |
| """ | |
| if image.mode != 'RGB': | |
| if image.mode == 'RGBA': | |
| return image | |
| elif image.mode == 'P': | |
| # Convert palette image to RGBA | |
| image = image.convert('RGB') | |
| else: | |
| raise ValueError("Unsupported image mode for conversion to RGBA.") | |
| # Create a copy of the image to avoid modifying the original | |
| rgba_image = image.copy() | |
| # Optionally, set a default alpha value (e.g., fully opaque) | |
| alpha = Image.new('L', rgba_image.size, 255) # 255 for full opacity | |
| rgba_image.putalpha(alpha) | |
| return rgba_image | |
| def apply_lut_to_image_path(lut_filename: str, image_path: str) -> Image: | |
| """ | |
| Apply a LUT to an image and return the result. | |
| Args: | |
| lut_filename: A string representing the path to the LUT file. | |
| image_path: A string representing the path to the input image. | |
| Returns: | |
| A PIL Image object with the LUT applied. | |
| """ | |
| img = open_image(image_path) | |
| # Handle specific file formats by converting to appropriate modes | |
| if image_path.lower().endswith(('.gif', '.webp')): | |
| # Convert to RGBA to preserve transparency | |
| img = img.convert('RGBA') | |
| elif image_path.lower().endswith(('.jpg', '.jpeg')): | |
| # Convert to RGB since JPEG doesn't support transparency | |
| img = convert_rgb_to_rgba_safe(img) | |
| # For other formats like PNG, retain the existing mode | |
| # Apply the LUT if provided | |
| if lut_filename is not None: | |
| try: | |
| img = apply_lut(img, lut_filename) | |
| except Exception as e: | |
| print(f"BAD LUT: Error applying LUT {str(e)}.") | |
| return img | |
| def convert_to_rgba_png(file_path: str) -> None: | |
| """ | |
| Converts an image to RGBA PNG format and saves it with the same base name and a .png extension. | |
| Args: | |
| file_path (str): The path to the input image file. | |
| Raises: | |
| ValueError: If the input file extension is not a supported image format. | |
| Exception: If there is an error during the conversion or saving process. | |
| """ | |
| try: | |
| # Open the original image | |
| img = open_image(file_path) | |
| # Convert the image to RGBA | |
| rgba_img = convert_rgb_to_rgba_safe(img) | |
| # Generate the new file name with .png extension | |
| base_name = os.path.splitext(file_path)[0] | |
| new_file_path = f"{base_name}.png" | |
| # Save the RGBA image as PNG | |
| rgba_img.save(new_file_path, format='PNG') | |
| print(f"Image saved as {new_file_path}") | |
| except ValueError as ve: | |
| print(f"ValueError: {ve}") | |
| except Exception as e: | |
| print(f"Error converting image: {e}") |