Spaces:
Running
Running
File size: 8,644 Bytes
ae29df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import argparse
import logging
import os
import pathlib
from typing import List, NoReturn
import lightning.pytorch as pl
from lightning.pytorch.strategies import DDPStrategy
from torch.utils.tensorboard import SummaryWriter
from data.datamodules import *
from utils import create_logging, parse_yaml
from models.resunet import *
from losses import get_loss_function
from models.audiosep import AudioSep, get_model_class
from data.waveform_mixers import SegmentMixer
from models.clap_encoder import CLAP_Encoder
from callbacks.base import CheckpointEveryNSteps
from optimizers.lr_schedulers import get_lr_lambda
def get_dirs(
workspace: str,
filename: str,
config_yaml: str,
devices_num: int
) -> List[str]:
r"""Get directories and paths.
Args:
workspace (str): directory of workspace
filename (str): filename of current .py file.
config_yaml (str): config yaml path
devices_num (int): 0 for cpu and 8 for training with 8 GPUs
Returns:
checkpoints_dir (str): directory to save checkpoints
logs_dir (str), directory to save logs
tf_logs_dir (str), directory to save TensorBoard logs
statistics_path (str), directory to save statistics
"""
os.makedirs(workspace, exist_ok=True)
yaml_name = pathlib.Path(config_yaml).stem
# Directory to save checkpoints
checkpoints_dir = os.path.join(
workspace,
"checkpoints",
filename,
"{},devices={}".format(yaml_name, devices_num),
)
os.makedirs(checkpoints_dir, exist_ok=True)
# Directory to save logs
logs_dir = os.path.join(
workspace,
"logs",
filename,
"{},devices={}".format(yaml_name, devices_num),
)
os.makedirs(logs_dir, exist_ok=True)
# Directory to save TensorBoard logs
create_logging(logs_dir, filemode="w")
logging.info(args)
tf_logs_dir = os.path.join(
workspace,
"tf_logs",
filename,
"{},devices={}".format(yaml_name, devices_num),
)
# Directory to save statistics
statistics_path = os.path.join(
workspace,
"statistics",
filename,
"{},devices={}".format(yaml_name, devices_num),
"statistics.pkl",
)
os.makedirs(os.path.dirname(statistics_path), exist_ok=True)
return checkpoints_dir, logs_dir, tf_logs_dir, statistics_path
def get_data_module(
config_yaml: str,
num_workers: int,
batch_size: int,
) -> DataModule:
r"""Create data_module. Mini-batch data can be obtained by:
code-block:: python
data_module.setup()
for batch_data_dict in data_module.train_dataloader():
print(batch_data_dict.keys())
break
Args:
workspace: str
config_yaml: str
num_workers: int, e.g., 0 for non-parallel and 8 for using cpu cores
for preparing data in parallel
distributed: bool
Returns:
data_module: DataModule
"""
# read configurations
configs = parse_yaml(config_yaml)
sampling_rate = configs['data']['sampling_rate']
segment_seconds = configs['data']['segment_seconds']
# audio-text datasets
datafiles = configs['data']['datafiles']
# dataset
dataset = AudioTextDataset(
datafiles=datafiles,
sampling_rate=sampling_rate,
max_clip_len=segment_seconds,
)
# data module
data_module = DataModule(
train_dataset=dataset,
num_workers=num_workers,
batch_size=batch_size
)
return data_module
def train(args) -> NoReturn:
r"""Train, evaluate, and save checkpoints.
Args:
workspace: str, directory of workspace
gpus: int, number of GPUs to train
config_yaml: str
"""
# arguments & parameters
workspace = args.workspace
config_yaml = args.config_yaml
filename = args.filename
devices_num = torch.cuda.device_count()
# Read config file.
configs = parse_yaml(config_yaml)
# Configuration of data
max_mix_num = configs['data']['max_mix_num']
sampling_rate = configs['data']['sampling_rate']
lower_db = configs['data']['loudness_norm']['lower_db']
higher_db = configs['data']['loudness_norm']['higher_db']
# Configuration of the separation model
query_net = configs['model']['query_net']
model_type = configs['model']['model_type']
input_channels = configs['model']['input_channels']
output_channels = configs['model']['output_channels']
condition_size = configs['model']['condition_size']
use_text_ratio = configs['model']['use_text_ratio']
# Configuration of the trainer
num_nodes = configs['train']['num_nodes']
batch_size = configs['train']['batch_size_per_device']
sync_batchnorm = configs['train']['sync_batchnorm']
num_workers = configs['train']['num_workers']
loss_type = configs['train']['loss_type']
optimizer_type = configs["train"]["optimizer"]["optimizer_type"]
learning_rate = float(configs['train']["optimizer"]['learning_rate'])
lr_lambda_type = configs['train']["optimizer"]['lr_lambda_type']
warm_up_steps = configs['train']["optimizer"]['warm_up_steps']
reduce_lr_steps = configs['train']["optimizer"]['reduce_lr_steps']
save_step_frequency = configs['train']['save_step_frequency']
resume_checkpoint_path = args.resume_checkpoint_path
if resume_checkpoint_path == "":
resume_checkpoint_path = None
else:
logging.info(f'Finetuning AudioSep with checkpoint [{resume_checkpoint_path}]')
# Get directories and paths
checkpoints_dir, logs_dir, tf_logs_dir, statistics_path = get_dirs(
workspace, filename, config_yaml, devices_num,
)
logging.info(configs)
# data module
data_module = get_data_module(
config_yaml=config_yaml,
batch_size=batch_size,
num_workers=num_workers,
)
# model
Model = get_model_class(model_type=model_type)
ss_model = Model(
input_channels=input_channels,
output_channels=output_channels,
condition_size=condition_size,
)
# loss function
loss_function = get_loss_function(loss_type)
segment_mixer = SegmentMixer(
max_mix_num=max_mix_num,
lower_db=lower_db,
higher_db=higher_db
)
if query_net == 'CLAP':
query_encoder = CLAP_Encoder()
else:
raise NotImplementedError
lr_lambda_func = get_lr_lambda(
lr_lambda_type=lr_lambda_type,
warm_up_steps=warm_up_steps,
reduce_lr_steps=reduce_lr_steps,
)
# pytorch-lightning model
pl_model = AudioSep(
ss_model=ss_model,
waveform_mixer=segment_mixer,
query_encoder=query_encoder,
loss_function=loss_function,
optimizer_type=optimizer_type,
learning_rate=learning_rate,
lr_lambda_func=lr_lambda_func,
use_text_ratio=use_text_ratio
)
checkpoint_every_n_steps = CheckpointEveryNSteps(
checkpoints_dir=checkpoints_dir,
save_step_frequency=save_step_frequency,
)
summary_writer = SummaryWriter(log_dir=tf_logs_dir)
callbacks = [checkpoint_every_n_steps]
trainer = pl.Trainer(
accelerator='auto',
devices='auto',
strategy='ddp_find_unused_parameters_true',
num_nodes=num_nodes,
precision="32-true",
logger=None,
callbacks=callbacks,
fast_dev_run=False,
max_epochs=-1,
log_every_n_steps=50,
use_distributed_sampler=True,
sync_batchnorm=sync_batchnorm,
num_sanity_val_steps=2,
enable_checkpointing=False,
enable_progress_bar=True,
enable_model_summary=True,
)
# Fit, evaluate, and save checkpoints.
trainer.fit(
model=pl_model,
train_dataloaders=None,
val_dataloaders=None,
datamodule=data_module,
ckpt_path=resume_checkpoint_path,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--workspace", type=str, required=True, help="Directory of workspace."
)
parser.add_argument(
"--config_yaml",
type=str,
required=True,
help="Path of config file for training.",
)
parser.add_argument(
"--resume_checkpoint_path",
type=str,
required=True,
default='',
help="Path of pretrained checkpoint for finetuning.",
)
args = parser.parse_args()
args.filename = pathlib.Path(__file__).stem
train(args) |