Spaces:
Runtime error
Runtime error
Suchinthana
commited on
Commit
Β·
42897ae
1
Parent(s):
0c2f440
removing selenium
Browse files- app.py +19 -36
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,15 +1,12 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
-
import cv2
|
| 4 |
import numpy as np
|
| 5 |
import torch
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import io
|
| 8 |
import gradio as gr
|
| 9 |
from openai import OpenAI
|
| 10 |
from geopy.geocoders import Nominatim
|
| 11 |
-
from
|
| 12 |
-
from gradio_folium import Folium
|
| 13 |
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
|
| 14 |
import spaces
|
| 15 |
|
|
@@ -67,7 +64,7 @@ Ensure all responses are descriptive and relevant to city names only, without co
|
|
| 67 |
"content": [
|
| 68 |
{
|
| 69 |
"type": "text",
|
| 70 |
-
"text":
|
| 71 |
}
|
| 72 |
]
|
| 73 |
}
|
|
@@ -109,38 +106,25 @@ def generate_geojson(response):
|
|
| 109 |
}]
|
| 110 |
}
|
| 111 |
|
| 112 |
-
#
|
| 113 |
@spaces.GPU
|
| 114 |
-
def
|
| 115 |
-
|
| 116 |
-
for feature in
|
| 117 |
geom_type = feature["geometry"]["type"]
|
| 118 |
coords = feature["geometry"]["coordinates"]
|
|
|
|
| 119 |
if geom_type == "Point":
|
| 120 |
-
|
| 121 |
elif geom_type in ["MultiPoint", "LineString"]:
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
coordinates.extend(part)
|
| 126 |
-
elif geom_type == "MultiPolygon":
|
| 127 |
for polygon in coords:
|
| 128 |
-
for
|
| 129 |
-
coordinates.extend(part)
|
| 130 |
-
lats = [coord[1] for coord in coordinates]
|
| 131 |
-
lngs = [coord[0] for coord in coordinates]
|
| 132 |
-
return [[min(lats), min(lngs)], [max(lats), max(lngs)]]
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
def generate_map_image(geojson_data):
|
| 137 |
-
m = Map()
|
| 138 |
-
geo_layer = GeoJson(geojson_data, name="Feature map")
|
| 139 |
-
geo_layer.add_to(m)
|
| 140 |
-
bounds = get_bounds(geojson_data)
|
| 141 |
-
m.fit_bounds(bounds)
|
| 142 |
-
img_data = m._to_png(5)
|
| 143 |
-
return Image.open(io.BytesIO(img_data))
|
| 144 |
|
| 145 |
# ControlNet pipeline setup
|
| 146 |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
|
|
@@ -175,13 +159,12 @@ def handle_query(query):
|
|
| 175 |
geojson_data = generate_geojson(response)
|
| 176 |
|
| 177 |
# Generate map image
|
| 178 |
-
map_image =
|
| 179 |
|
| 180 |
# Generate mask for ControlNet
|
| 181 |
-
empty_map =
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
_, mask = cv2.threshold(difference, 15, 255, cv2.THRESH_BINARY)
|
| 185 |
|
| 186 |
# Convert mask to PIL Image
|
| 187 |
mask_image = Image.fromarray(mask)
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
+
from PIL import Image, ImageDraw
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
from openai import OpenAI
|
| 8 |
from geopy.geocoders import Nominatim
|
| 9 |
+
from staticmap import StaticMap, CircleMarker, Polygon
|
|
|
|
| 10 |
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
|
| 11 |
import spaces
|
| 12 |
|
|
|
|
| 64 |
"content": [
|
| 65 |
{
|
| 66 |
"type": "text",
|
| 67 |
+
"text": "draw a map in coconut triangle of sri lanka: The Coconut Triangle is a region in Sri Lanka that's known for its coconut production. It's made up of the districts of Kurunegala, Puttalam, and Gampaha."
|
| 68 |
}
|
| 69 |
]
|
| 70 |
}
|
|
|
|
| 106 |
}]
|
| 107 |
}
|
| 108 |
|
| 109 |
+
# Generate static map image
|
| 110 |
@spaces.GPU
|
| 111 |
+
def generate_static_map(geojson_data):
|
| 112 |
+
m = StaticMap(500, 500)
|
| 113 |
+
for feature in geojson_data["features"]:
|
| 114 |
geom_type = feature["geometry"]["type"]
|
| 115 |
coords = feature["geometry"]["coordinates"]
|
| 116 |
+
|
| 117 |
if geom_type == "Point":
|
| 118 |
+
m.add_marker(CircleMarker((coords[0], coords[1]), 'blue', 10))
|
| 119 |
elif geom_type in ["MultiPoint", "LineString"]:
|
| 120 |
+
for coord in coords:
|
| 121 |
+
m.add_marker(CircleMarker((coord[0], coord[1]), 'red', 10))
|
| 122 |
+
elif geom_type in ["Polygon", "MultiPolygon"]:
|
|
|
|
|
|
|
| 123 |
for polygon in coords:
|
| 124 |
+
m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], 'green', 3))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
image = m.render(zoom=10)
|
| 127 |
+
return Image.fromarray(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
# ControlNet pipeline setup
|
| 130 |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
|
|
|
|
| 159 |
geojson_data = generate_geojson(response)
|
| 160 |
|
| 161 |
# Generate map image
|
| 162 |
+
map_image = generate_static_map(geojson_data)
|
| 163 |
|
| 164 |
# Generate mask for ControlNet
|
| 165 |
+
empty_map = Image.new("RGB", map_image.size, "white")
|
| 166 |
+
difference = np.array(map_image) - np.array(empty_map)
|
| 167 |
+
mask = np.any(difference != 0, axis=-1).astype(np.uint8) * 255
|
|
|
|
| 168 |
|
| 169 |
# Convert mask to PIL Image
|
| 170 |
mask_image = Image.fromarray(mask)
|
requirements.txt
CHANGED
|
@@ -10,4 +10,5 @@ spaces
|
|
| 10 |
torchvision
|
| 11 |
opencv-python
|
| 12 |
torch
|
|
|
|
| 13 |
selenium
|
|
|
|
| 10 |
torchvision
|
| 11 |
opencv-python
|
| 12 |
torch
|
| 13 |
+
staticmap
|
| 14 |
selenium
|