import gradio as gr import os import torch.nn.functional as F import torch from torchvision import transforms model = torch.load("./model.pth", map_location=torch.device("cpu")) IMG_SIZE = 224 MASK_LABEL = ["Mask worn properly.", "Mask not worn properly: nose out", "Mask not worn properly: chin and nose out", "Didn't wear mask."] transforms_test = transforms.Compose( [ transforms.Resize((IMG_SIZE, IMG_SIZE)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ] ) MASK_LABEL = ["Mask worn properly.", "Mask not worn properly: nose out", "Mask not worn properly: chin and nose out", "Didn't wear mask."] def predict_image(image): transformed_tensor = torch.unsqueeze(transforms_test(image), 0) logits = model(transformed_tensor) probability = torch.flatten(F.softmax(logits, dim=1)).detach().cpu().numpy() print(probability) labels = {A: B.item() for A, B in zip(MASK_LABEL, probability)} sorted_labels = dict(sorted(labels.items(), key=lambda item: item[1], reverse=True)) print(sorted_labels) return sorted_labels title = "ViT Mask Detection" description = "
Gradio demo for ViT-16 Mask Image Classification created by Steven Limcorn
" article = "An Application made by stevenlimcorn. Notebook access at: Mask Classification
" demo = gr.Interface(predict_image, inputs=gr.Image(label="Input Image", type="pil", source="webcam"), outputs=gr.Label(), title=title, description=description, article=article ) demo.launch()