Upload 5 files
Browse files- config.json +31 -0
- gradio.ipynb +306 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- vocab.json +0 -0
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "roberta-large",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"RobertaForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"gradient_checkpointing": false,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 1024,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 4096,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 514,
|
| 17 |
+
"model_type": "roberta",
|
| 18 |
+
"num_attention_heads": 16,
|
| 19 |
+
"num_hidden_layers": 24,
|
| 20 |
+
"pad_token_id": 1,
|
| 21 |
+
"type_vocab_size": 1,
|
| 22 |
+
"vocab_size": 50265,
|
| 23 |
+
"id2label": {
|
| 24 |
+
"0": "NEGATIVE",
|
| 25 |
+
"1": "POSITIVE"
|
| 26 |
+
},
|
| 27 |
+
"label2id": {
|
| 28 |
+
"NEGATIVE": 0,
|
| 29 |
+
"POSITIVE": 1
|
| 30 |
+
}
|
| 31 |
+
}
|
gradio.ipynb
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"<center>\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"## [S. Mussard](https://sites.google.com/view/cv-stphane-mussard/accueil \"Homepage\")\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"# UM6P\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"# Natural Language Processing: LOGIT\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"<center> <a href=\"https://www.fgses-um6p.ma/\"><img src=\"UM6P.png\",style=\"float: left; max-width: 500px; width: 20\" />\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"<div align=\"center\"> \n",
|
| 21 |
+
"<a href=\"https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html\"><img src=\"http://scikit-learn.org/stable/_static/scikit-learn-logo-small.png\" style=\"max-width: 180px; display: inline\" alt=\"Scikit-Learn\"/></a>\n",
|
| 22 |
+
"</div>\n",
|
| 23 |
+
"<div align=\"center\"> <a href=\"https://www.python.org/\"><img src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Python_logo_and_wordmark.svg/390px-Python_logo_and_wordmark.svg.png\" style=\"max-width: 150px; display: inline\" alt=\"Python\"/></a> \n",
|
| 24 |
+
"</div>\n",
|
| 25 |
+
" \n"
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "markdown",
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"source": [
|
| 32 |
+
"<div align=\"center\">\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"## Sentiment Analysis"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": 1,
|
| 40 |
+
"metadata": {},
|
| 41 |
+
"outputs": [
|
| 42 |
+
{
|
| 43 |
+
"name": "stderr",
|
| 44 |
+
"output_type": "stream",
|
| 45 |
+
"text": [
|
| 46 |
+
"C:\\Users\\smussa01\\AppData\\Roaming\\Python\\Python37\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 47 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 48 |
+
]
|
| 49 |
+
}
|
| 50 |
+
],
|
| 51 |
+
"source": [
|
| 52 |
+
"# Importation \n",
|
| 53 |
+
"\n",
|
| 54 |
+
"%matplotlib inline \n",
|
| 55 |
+
"import numpy as np\n",
|
| 56 |
+
"import pandas as pd\n",
|
| 57 |
+
"import matplotlib.pyplot as plt\n",
|
| 58 |
+
"from sklearn import metrics\n",
|
| 59 |
+
"import torch\n",
|
| 60 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
| 61 |
+
"from transformers import AutoModel, AutoTokenizer\n",
|
| 62 |
+
"from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"import gradio as gr\n",
|
| 65 |
+
"from gradio.components import Label"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"cell_type": "code",
|
| 70 |
+
"execution_count": 2,
|
| 71 |
+
"metadata": {},
|
| 72 |
+
"outputs": [
|
| 73 |
+
{
|
| 74 |
+
"name": "stderr",
|
| 75 |
+
"output_type": "stream",
|
| 76 |
+
"text": [
|
| 77 |
+
"Some weights of the model checkpoint at S:\\Mes Documents\\Cours\\Cours-NLP\\PFE kenza\\poids were not used when initializing RobertaModel: ['classifier.out_proj.bias', 'classifier.dense.weight', 'classifier.out_proj.weight', 'classifier.dense.bias']\n",
|
| 78 |
+
"- This IS expected if you are initializing RobertaModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 79 |
+
"- This IS NOT expected if you are initializing RobertaModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 80 |
+
"Some weights of RobertaModel were not initialized from the model checkpoint at S:\\Mes Documents\\Cours\\Cours-NLP\\PFE kenza\\poids and are newly initialized: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']\n",
|
| 81 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 82 |
+
]
|
| 83 |
+
}
|
| 84 |
+
],
|
| 85 |
+
"source": [
|
| 86 |
+
"path = \".\\poids\"\n",
|
| 87 |
+
"model = AutoModel.from_pretrained(path, trust_remote_code=True)\n",
|
| 88 |
+
"class CamembertClass(torch.nn.Module):\n",
|
| 89 |
+
" def __init__(self):\n",
|
| 90 |
+
" super(CamembertClass, self).__init__()\n",
|
| 91 |
+
" self.l1 = model\n",
|
| 92 |
+
" self.dropout = torch.nn.Dropout(0.1)\n",
|
| 93 |
+
" self.pre_classifier = torch.nn.Linear(1024, 1024)\n",
|
| 94 |
+
" self.classifier = torch.nn.Linear(1024, 3)\n",
|
| 95 |
+
"\n",
|
| 96 |
+
" def forward(self, input_ids, attention_mask, token_type_ids):\n",
|
| 97 |
+
" output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)\n",
|
| 98 |
+
" hidden_state = output_1[0]\n",
|
| 99 |
+
" pooler = hidden_state[:, 0]\n",
|
| 100 |
+
" pooler = self.pre_classifier(pooler)\n",
|
| 101 |
+
" pooler = torch.nn.ReLU()(pooler)\n",
|
| 102 |
+
" pooler = self.dropout(pooler)\n",
|
| 103 |
+
" output = self.classifier(pooler)\n",
|
| 104 |
+
" return output"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"cell_type": "code",
|
| 109 |
+
"execution_count": 3,
|
| 110 |
+
"metadata": {},
|
| 111 |
+
"outputs": [],
|
| 112 |
+
"source": [
|
| 113 |
+
"#model_gradio = CamembertClass()\n",
|
| 114 |
+
"path = \"S:\\Mes Documents\\Cours\\Cours-NLP\\PFE kenza\\pytorch_model.bin\"\n",
|
| 115 |
+
"model = torch.load(path, map_location=\"cpu\")\n",
|
| 116 |
+
"path_tokenizer = \"S:\\Mes Documents\\Cours\\Cours-NLP\\PFE kenza\"\n",
|
| 117 |
+
"tokenizer = AutoTokenizer.from_pretrained(path_tokenizer)\n"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "code",
|
| 122 |
+
"execution_count": 4,
|
| 123 |
+
"metadata": {},
|
| 124 |
+
"outputs": [],
|
| 125 |
+
"source": [
|
| 126 |
+
"#pip install pydantic==1.10.7"
|
| 127 |
+
]
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
"cell_type": "code",
|
| 131 |
+
"execution_count": 6,
|
| 132 |
+
"metadata": {},
|
| 133 |
+
"outputs": [
|
| 134 |
+
{
|
| 135 |
+
"name": "stdout",
|
| 136 |
+
"output_type": "stream",
|
| 137 |
+
"text": [
|
| 138 |
+
"Running on local URL: http://127.0.0.1:7861\n",
|
| 139 |
+
"Running on public URL: https://c6de28517ce6caf32f.gradio.live\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
| 142 |
+
]
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"data": {
|
| 146 |
+
"text/html": [
|
| 147 |
+
"<div><iframe src=\"https://c6de28517ce6caf32f.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
| 148 |
+
],
|
| 149 |
+
"text/plain": [
|
| 150 |
+
"<IPython.core.display.HTML object>"
|
| 151 |
+
]
|
| 152 |
+
},
|
| 153 |
+
"metadata": {},
|
| 154 |
+
"output_type": "display_data"
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"data": {
|
| 158 |
+
"text/plain": []
|
| 159 |
+
},
|
| 160 |
+
"execution_count": 6,
|
| 161 |
+
"metadata": {},
|
| 162 |
+
"output_type": "execute_result"
|
| 163 |
+
}
|
| 164 |
+
],
|
| 165 |
+
"source": [
|
| 166 |
+
"model.eval() # Mettez votre modèle en mode évaluation\n",
|
| 167 |
+
"\n",
|
| 168 |
+
"# Fonction d'inférence pour Gradio\n",
|
| 169 |
+
"def predict(text):\n",
|
| 170 |
+
" inputs = tokenizer(text, return_tensors=\"pt\", padding=True, truncation=True, max_length=512)\n",
|
| 171 |
+
" \n",
|
| 172 |
+
" # Extract necessary inputs for the model\n",
|
| 173 |
+
" input_ids = inputs['input_ids']\n",
|
| 174 |
+
" attention_mask = inputs['attention_mask']\n",
|
| 175 |
+
" token_type_ids = inputs.get('token_type_ids', None) # Some models do not use segment IDs\n",
|
| 176 |
+
" \n",
|
| 177 |
+
" # Make prediction\n",
|
| 178 |
+
" with torch.no_grad():\n",
|
| 179 |
+
" # Directly use outputs if your model returns logits directly\n",
|
| 180 |
+
" logits = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)\n",
|
| 181 |
+
"\n",
|
| 182 |
+
" \n",
|
| 183 |
+
" # Convert logits to probabilities\n",
|
| 184 |
+
" probabilities = torch.softmax(logits, dim=1).detach().cpu().numpy()[0]\n",
|
| 185 |
+
" # Replace the following with your actual classes\n",
|
| 186 |
+
" classes = ['Negative Sentiment', 'Positive Sentiment']\n",
|
| 187 |
+
" return {classes[i]: float(probabilities[i]) for i in range(len(classes))}\n",
|
| 188 |
+
"\n",
|
| 189 |
+
"# Création de l'interface Gradio\n",
|
| 190 |
+
"iface = gr.Interface(fn=predict,\n",
|
| 191 |
+
" inputs=gr.components.Textbox(placeholder=\"Enter your text here...\"),\n",
|
| 192 |
+
" outputs=gr.components.Label(num_top_classes=2))\n",
|
| 193 |
+
"iface.launch(share=True)\n"
|
| 194 |
+
]
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"cell_type": "markdown",
|
| 198 |
+
"metadata": {},
|
| 199 |
+
"source": [
|
| 200 |
+
"### <span style=\"color:blue\">Dataset importation : absences.csv</span>"
|
| 201 |
+
]
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"cell_type": "code",
|
| 205 |
+
"execution_count": 5,
|
| 206 |
+
"metadata": {},
|
| 207 |
+
"outputs": [
|
| 208 |
+
{
|
| 209 |
+
"data": {
|
| 210 |
+
"text/plain": [
|
| 211 |
+
"{'Negative Sentiment': 0.8629835844039917,\n",
|
| 212 |
+
" 'Positive Sentiment': 0.1370164006948471}"
|
| 213 |
+
]
|
| 214 |
+
},
|
| 215 |
+
"execution_count": 5,
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"output_type": "execute_result"
|
| 218 |
+
}
|
| 219 |
+
],
|
| 220 |
+
"source": [
|
| 221 |
+
"predict(\"Marrakech is a poop\")"
|
| 222 |
+
]
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"cell_type": "code",
|
| 226 |
+
"execution_count": 30,
|
| 227 |
+
"metadata": {},
|
| 228 |
+
"outputs": [
|
| 229 |
+
{
|
| 230 |
+
"name": "stdout",
|
| 231 |
+
"output_type": "stream",
|
| 232 |
+
"text": [
|
| 233 |
+
"Running on local URL: http://127.0.0.1:7868\n",
|
| 234 |
+
"\n",
|
| 235 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
| 236 |
+
]
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"data": {
|
| 240 |
+
"text/html": [
|
| 241 |
+
"<div><iframe src=\"http://127.0.0.1:7868/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
| 242 |
+
],
|
| 243 |
+
"text/plain": [
|
| 244 |
+
"<IPython.core.display.HTML object>"
|
| 245 |
+
]
|
| 246 |
+
},
|
| 247 |
+
"metadata": {},
|
| 248 |
+
"output_type": "display_data"
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"data": {
|
| 252 |
+
"text/plain": []
|
| 253 |
+
},
|
| 254 |
+
"execution_count": 30,
|
| 255 |
+
"metadata": {},
|
| 256 |
+
"output_type": "execute_result"
|
| 257 |
+
}
|
| 258 |
+
],
|
| 259 |
+
"source": [
|
| 260 |
+
"def image_clf(inp):\n",
|
| 261 |
+
" return {'cat': 0.3 , 'dog': 0.7}\n",
|
| 262 |
+
"demo = gr.Interface(fn=image_clf, inputs=\"image\", outputs=\"label\")\n",
|
| 263 |
+
"demo.launch()\n",
|
| 264 |
+
" "
|
| 265 |
+
]
|
| 266 |
+
}
|
| 267 |
+
],
|
| 268 |
+
"metadata": {
|
| 269 |
+
"hide_input": false,
|
| 270 |
+
"kernelspec": {
|
| 271 |
+
"display_name": "Python 3",
|
| 272 |
+
"language": "python",
|
| 273 |
+
"name": "python3"
|
| 274 |
+
},
|
| 275 |
+
"language_info": {
|
| 276 |
+
"codemirror_mode": {
|
| 277 |
+
"name": "ipython",
|
| 278 |
+
"version": 3
|
| 279 |
+
},
|
| 280 |
+
"file_extension": ".py",
|
| 281 |
+
"mimetype": "text/x-python",
|
| 282 |
+
"name": "python",
|
| 283 |
+
"nbconvert_exporter": "python",
|
| 284 |
+
"pygments_lexer": "ipython3",
|
| 285 |
+
"version": "3.7.8"
|
| 286 |
+
},
|
| 287 |
+
"toc": {
|
| 288 |
+
"base_numbering": 1,
|
| 289 |
+
"nav_menu": {
|
| 290 |
+
"height": "244px",
|
| 291 |
+
"width": "252px"
|
| 292 |
+
},
|
| 293 |
+
"number_sections": true,
|
| 294 |
+
"sideBar": true,
|
| 295 |
+
"skip_h1_title": false,
|
| 296 |
+
"title_cell": "Table of Contents",
|
| 297 |
+
"title_sidebar": "Contents",
|
| 298 |
+
"toc_cell": false,
|
| 299 |
+
"toc_position": {},
|
| 300 |
+
"toc_section_display": "block",
|
| 301 |
+
"toc_window_display": false
|
| 302 |
+
}
|
| 303 |
+
},
|
| 304 |
+
"nbformat": 4,
|
| 305 |
+
"nbformat_minor": 1
|
| 306 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b89cef2de03b23b80a2163335e82b692af1e92a8ff30d318dfd17e017f1fa63
|
| 3 |
+
size 1425885920
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|