Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import shlex | |
import subprocess | |
subprocess.run( | |
shlex.split("pip install flash-attn --no-build-isolation"), | |
env=os.environ | {"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
check=True, | |
) | |
subprocess.run( | |
shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.4/mamba_ssm-2.2.4+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"), | |
check=True, | |
) | |
subprocess.run( | |
shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.5.0.post8/causal_conv1d-1.5.0.post8+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"), | |
check=True, | |
) | |
import spaces | |
import torch | |
import torchaudio | |
import gradio as gr | |
from os import getenv | |
from zonos.model import Zonos | |
from zonos.conditioning import make_cond_dict, supported_language_codes | |
# 1. hard-kill torch.compile / dynamo / inductor so they never run | |
os.environ["TORCH_COMPILE_DISABLE"] = "1" | |
os.environ["TORCHINDUCTOR_DISABLE"] = "1" | |
os.environ["TORCHDYNAMO_DISABLE"] = "1" # <- the one that actually blocks torch._dynamo | |
os.environ["TORCHDYNAMO_SUPPRESS_ERRORS"] = "True" # fall back to eager if something still slips through :contentReference[oaicite:1]{index=1} | |
torch._dynamo.disable() # guard for older versions | |
torch.compile = lambda f,*_,**__: f # no-op wrapper | |
device = "cuda" | |
MODEL_NAMES = ["Zyphra/Zonos-v0.1-transformer", "Zyphra/Zonos-v0.1-hybrid"] | |
MODELS = {name: Zonos.from_pretrained(name, device=device) for name in MODEL_NAMES} | |
for model in MODELS.values(): | |
model.requires_grad_(False).eval() | |
def _patch_cuda_props(): | |
if torch.cuda.is_available(): | |
for i in range(torch.cuda.device_count()): | |
p = torch.cuda.get_device_properties(i) | |
if not hasattr(p, "regs_per_multiprocessor"): | |
setattr(p, "regs_per_multiprocessor", 65536) | |
if not hasattr(p, "max_threads_per_multi_processor"): | |
setattr(p, "max_threads_per_multi_processor", 2048) | |
_patch_cuda_props() | |
def update_ui(model_choice): | |
""" | |
Dynamically show/hide UI elements based on the model's conditioners. | |
We do NOT display 'language_id' or 'ctc_loss' even if they exist in the model. | |
""" | |
model = MODELS[model_choice] | |
cond_names = [c.name for c in model.prefix_conditioner.conditioners] | |
print("Conditioners in this model:", cond_names) | |
text_update = gr.update(visible=("espeak" in cond_names)) | |
language_update = gr.update(visible=("espeak" in cond_names)) | |
speaker_audio_update = gr.update(visible=("speaker" in cond_names)) | |
prefix_audio_update = gr.update(visible=True) | |
emotion1_update = gr.update(visible=("emotion" in cond_names)) | |
emotion2_update = gr.update(visible=("emotion" in cond_names)) | |
emotion3_update = gr.update(visible=("emotion" in cond_names)) | |
emotion4_update = gr.update(visible=("emotion" in cond_names)) | |
emotion5_update = gr.update(visible=("emotion" in cond_names)) | |
emotion6_update = gr.update(visible=("emotion" in cond_names)) | |
emotion7_update = gr.update(visible=("emotion" in cond_names)) | |
emotion8_update = gr.update(visible=("emotion" in cond_names)) | |
vq_single_slider_update = gr.update(visible=("vqscore_8" in cond_names)) | |
fmax_slider_update = gr.update(visible=("fmax" in cond_names)) | |
pitch_std_slider_update = gr.update(visible=("pitch_std" in cond_names)) | |
speaking_rate_slider_update = gr.update(visible=("speaking_rate" in cond_names)) | |
dnsmos_slider_update = gr.update(visible=("dnsmos_ovrl" in cond_names)) | |
speaker_noised_checkbox_update = gr.update(visible=("speaker_noised" in cond_names)) | |
unconditional_keys_update = gr.update( | |
choices=[name for name in cond_names if name not in ("espeak", "language_id")] | |
) | |
return ( | |
text_update, | |
language_update, | |
speaker_audio_update, | |
prefix_audio_update, | |
emotion1_update, | |
emotion2_update, | |
emotion3_update, | |
emotion4_update, | |
emotion5_update, | |
emotion6_update, | |
emotion7_update, | |
emotion8_update, | |
vq_single_slider_update, | |
fmax_slider_update, | |
pitch_std_slider_update, | |
speaking_rate_slider_update, | |
dnsmos_slider_update, | |
speaker_noised_checkbox_update, | |
unconditional_keys_update, | |
) | |
def generate_audio( | |
model_choice, | |
text, | |
language, | |
speaker_audio, | |
prefix_audio, | |
e1, | |
e2, | |
e3, | |
e4, | |
e5, | |
e6, | |
e7, | |
e8, | |
vq_single, | |
fmax, | |
pitch_std, | |
speaking_rate, | |
dnsmos_ovrl, | |
speaker_noised, | |
cfg_scale, | |
min_p, | |
seed, | |
randomize_seed, | |
unconditional_keys, | |
progress=gr.Progress(), | |
): | |
""" | |
Generates audio based on the provided UI parameters. | |
We do NOT use language_id or ctc_loss even if the model has them. | |
""" | |
selected_model = MODELS[model_choice] | |
speaker_noised_bool = bool(speaker_noised) | |
fmax = float(fmax) | |
pitch_std = float(pitch_std) | |
speaking_rate = float(speaking_rate) | |
dnsmos_ovrl = float(dnsmos_ovrl) | |
cfg_scale = float(cfg_scale) | |
min_p = float(min_p) | |
seed = int(seed) | |
max_new_tokens = 86 * 30 | |
if randomize_seed: | |
seed = torch.randint(0, 2**32 - 1, (1,)).item() | |
torch.manual_seed(seed) | |
speaker_embedding = None | |
if speaker_audio is not None and "speaker" not in unconditional_keys: | |
wav, sr = torchaudio.load(speaker_audio) | |
speaker_embedding = selected_model.make_speaker_embedding(wav, sr) | |
speaker_embedding = speaker_embedding.to(device, dtype=torch.bfloat16) | |
audio_prefix_codes = None | |
if prefix_audio is not None: | |
wav_prefix, sr_prefix = torchaudio.load(prefix_audio) | |
wav_prefix = wav_prefix.mean(0, keepdim=True) | |
wav_prefix = torchaudio.functional.resample(wav_prefix, sr_prefix, selected_model.autoencoder.sampling_rate) | |
wav_prefix = wav_prefix.to(device, dtype=torch.float32) | |
with torch.autocast(device, dtype=torch.float32): | |
audio_prefix_codes = selected_model.autoencoder.encode(wav_prefix.unsqueeze(0)) | |
emotion_tensor = torch.tensor(list(map(float, [e1, e2, e3, e4, e5, e6, e7, e8])), device=device) | |
vq_val = float(vq_single) | |
vq_tensor = torch.tensor([vq_val] * 8, device=device).unsqueeze(0) | |
cond_dict = make_cond_dict( | |
text=text, | |
language=language, | |
speaker=speaker_embedding, | |
emotion=emotion_tensor, | |
vqscore_8=vq_tensor, | |
fmax=fmax, | |
pitch_std=pitch_std, | |
speaking_rate=speaking_rate, | |
dnsmos_ovrl=dnsmos_ovrl, | |
speaker_noised=speaker_noised_bool, | |
device=device, | |
unconditional_keys=unconditional_keys, | |
) | |
conditioning = selected_model.prepare_conditioning(cond_dict) | |
estimated_generation_duration = 30 * len(text) / 400 | |
estimated_total_steps = int(estimated_generation_duration * 86) | |
def update_progress(_frame: torch.Tensor, step: int, _total_steps: int) -> bool: | |
progress((step, estimated_total_steps)) | |
return True | |
codes = selected_model.generate( | |
prefix_conditioning=conditioning, | |
audio_prefix_codes=audio_prefix_codes, | |
max_new_tokens=max_new_tokens, | |
cfg_scale=cfg_scale, | |
batch_size=1, | |
sampling_params=dict(min_p=min_p), | |
callback=update_progress, | |
) | |
wav_out = selected_model.autoencoder.decode(codes).cpu().detach() | |
sr_out = selected_model.autoencoder.sampling_rate | |
if wav_out.dim() == 2 and wav_out.size(0) > 1: | |
wav_out = wav_out[0:1, :] | |
return (sr_out, wav_out.squeeze().numpy()), seed | |
def build_interface(): | |
# Build interface with enhanced visual elements and layout | |
with gr.Blocks() as demo: | |
# Header section | |
with gr.Column(elem_classes="app-header"): | |
gr.Markdown("# ✨ Zonos Text-to-Speech Generator ✨") | |
gr.Markdown("Create natural-sounding speech with customizable voice characteristics") | |
# Main content container | |
with gr.Column(elem_classes="container"): | |
# First panel - Text & Model Selection | |
with gr.Column(elem_classes="panel"): | |
gr.Markdown('<div class="title">💬 Text & Model Configuration</div>') | |
with gr.Row(): | |
with gr.Column(scale=2): | |
model_choice = gr.Dropdown( | |
choices=MODEL_NAMES, | |
value="Zyphra/Zonos-v0.1-transformer", | |
label="Zonos Model Type", | |
info="Select the model variant to use.", | |
) | |
text = gr.Textbox( | |
label="Text to Synthesize", | |
value="Zonos uses eSpeak for text to phoneme conversion!", | |
lines=4, | |
max_length=500, | |
) | |
language = gr.Dropdown( | |
choices=supported_language_codes, | |
value="en-us", | |
label="Language Code", | |
info="Select a language code.", | |
) | |
with gr.Column(scale=1): | |
prefix_audio = gr.Audio( | |
value="assets/silence_100ms.wav", | |
label="Optional Prefix Audio (continue from this audio)", | |
type="filepath", | |
) | |
# Second panel - Voice Characteristics | |
with gr.Column(elem_classes="panel"): | |
gr.Markdown('<div class="title">🎤 Voice Characteristics</div>') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
speaker_audio = gr.Audio( | |
label="Optional Speaker Audio (for voice cloning)", | |
type="filepath", | |
) | |
speaker_noised_checkbox = gr.Checkbox(label="Denoise Speaker?", value=False) | |
with gr.Column(scale=2): | |
with gr.Row(): | |
with gr.Column(): | |
dnsmos_slider = gr.Slider(1.0, 5.0, value=4.0, step=0.1, label="Voice Quality", elem_classes="slider-container") | |
fmax_slider = gr.Slider(0, 24000, value=24000, step=1, label="Frequency Max (Hz)", elem_classes="slider-container") | |
vq_single_slider = gr.Slider(0.5, 0.8, 0.78, 0.01, label="Voice Clarity", elem_classes="slider-container") | |
with gr.Column(): | |
pitch_std_slider = gr.Slider(0.0, 300.0, value=45.0, step=1, label="Pitch Variation", elem_classes="slider-container") | |
speaking_rate_slider = gr.Slider(5.0, 30.0, value=15.0, step=0.5, label="Speaking Rate", elem_classes="slider-container") | |
# Third panel - Generation Parameters | |
with gr.Column(elem_classes="panel"): | |
gr.Markdown('<div class="title">⚙️ Generation Parameters</div>') | |
with gr.Row(): | |
with gr.Column(): | |
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.0, 0.1, label="Guidance Scale", elem_classes="slider-container") | |
min_p_slider = gr.Slider(0.0, 1.0, 0.15, 0.01, label="Min P (Randomness)", elem_classes="slider-container") | |
with gr.Column(): | |
seed_number = gr.Number(label="Seed", value=420, precision=0) | |
randomize_seed_toggle = gr.Checkbox(label="Randomize Seed (before generation)", value=True) | |
# Emotion Panel with Tabbed Interface | |
with gr.Accordion("🎭 Emotion Settings", open=False, elem_classes="panel"): | |
gr.Markdown( | |
"Adjust these sliders to control the emotional tone of the generated speech.\n" | |
"For a neutral voice, keep 'Neutral' high and other emotions low." | |
) | |
with gr.Row(elem_classes="emotion-grid"): | |
emotion1 = gr.Slider(0.0, 1.0, 1.0, 0.05, label="Happiness", elem_classes="slider-container") | |
emotion2 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Sadness", elem_classes="slider-container") | |
emotion3 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Disgust", elem_classes="slider-container") | |
emotion4 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Fear", elem_classes="slider-container") | |
with gr.Row(elem_classes="emotion-grid"): | |
emotion5 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Surprise", elem_classes="slider-container") | |
emotion6 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Anger", elem_classes="slider-container") | |
emotion7 = gr.Slider(0.0, 1.0, 0.1, 0.05, label="Other", elem_classes="slider-container") | |
emotion8 = gr.Slider(0.0, 1.0, 0.2, 0.05, label="Neutral", elem_classes="slider-container") | |
# Advanced Settings Panel | |
with gr.Accordion("⚡ Advanced Settings", open=False, elem_classes="panel"): | |
gr.Markdown( | |
"### Unconditional Toggles\n" | |
"Checking a box will make the model ignore the corresponding conditioning value and make it unconditional.\n" | |
'Practically this means the given conditioning feature will be unconstrained and "filled in automatically".' | |
) | |
unconditional_keys = gr.CheckboxGroup( | |
[ | |
"speaker", | |
"emotion", | |
"vqscore_8", | |
"fmax", | |
"pitch_std", | |
"speaking_rate", | |
"dnsmos_ovrl", | |
"speaker_noised", | |
], | |
value=["emotion"], | |
label="Unconditional Keys", | |
) | |
# Generate Button and Output Area | |
with gr.Column(elem_classes="panel output-container"): | |
gr.Markdown('<div class="title">🔊 Generate & Output</div>') | |
generate_button = gr.Button("Generate Audio", elem_classes="generate-button") | |
output_audio = gr.Audio(label="Generated Audio", type="numpy", autoplay=True, elem_classes="audio-output") | |
model_choice.change( | |
fn=update_ui, | |
inputs=[model_choice], | |
outputs=[ | |
text, | |
language, | |
speaker_audio, | |
prefix_audio, | |
emotion1, | |
emotion2, | |
emotion3, | |
emotion4, | |
emotion5, | |
emotion6, | |
emotion7, | |
emotion8, | |
vq_single_slider, | |
fmax_slider, | |
pitch_std_slider, | |
speaking_rate_slider, | |
dnsmos_slider, | |
speaker_noised_checkbox, | |
unconditional_keys, | |
], | |
) | |
# On page load, trigger the same UI refresh | |
demo.load( | |
fn=update_ui, | |
inputs=[model_choice], | |
outputs=[ | |
text, | |
language, | |
speaker_audio, | |
prefix_audio, | |
emotion1, | |
emotion2, | |
emotion3, | |
emotion4, | |
emotion5, | |
emotion6, | |
emotion7, | |
emotion8, | |
vq_single_slider, | |
fmax_slider, | |
pitch_std_slider, | |
speaking_rate_slider, | |
dnsmos_slider, | |
speaker_noised_checkbox, | |
unconditional_keys, | |
], | |
) | |
# Generate audio on button click | |
generate_button.click( | |
fn=generate_audio, | |
inputs=[ | |
model_choice, | |
text, | |
language, | |
speaker_audio, | |
prefix_audio, | |
emotion1, | |
emotion2, | |
emotion3, | |
emotion4, | |
emotion5, | |
emotion6, | |
emotion7, | |
emotion8, | |
vq_single_slider, | |
fmax_slider, | |
pitch_std_slider, | |
speaking_rate_slider, | |
dnsmos_slider, | |
speaker_noised_checkbox, | |
cfg_scale_slider, | |
min_p_slider, | |
seed_number, | |
randomize_seed_toggle, | |
unconditional_keys, | |
], | |
outputs=[output_audio, seed_number], | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = build_interface() | |
demo.launch() |