Zero-5 / app.py
Staticaliza's picture
Update app.py
e9391fb verified
raw
history blame
5.18 kB
import os, torch, torchaudio, gradio as gr
import spaces
from zonos.model import Zonos
from zonos.conditioning import make_cond_dict, supported_language_codes
device = "cuda"
MODEL_NAME = "Zyphra/Zonos-v0.1-transformer"
MODEL = Zonos.from_pretrained(MODEL_NAME, device=device)
# def _patch_cuda_props():
# if torch.cuda.is_available():
# for i in range(torch.cuda.device_count()):
# p = torch.cuda.get_device_properties(i)
# if not hasattr(p, "regs_per_multiprocessor"):
# setattr(p, "regs_per_multiprocessor", 65536)
# if not hasattr(p, "max_threads_per_multi_processor"):
# setattr(p, "max_threads_per_multi_processor", 2048)
# _patch_cuda_props()
@spaces.GPU
def generate_audio(
text,
language,
speaker_audio,
e1,
e2,
e3,
e4,
e5,
e6,
e7,
e8,
clarity,
fmax,
pitch_std,
speaking_rate,
dnsmos_ovrl,
cfg_scale,
min_p,
steps,
seed,
randomize_seed,
progress=gr.Progress(),
):
if randomize_seed:
seed = torch.randint(0, 2**32 - 1, (1,)).item()
torch.manual_seed(int(seed))
speaker_embedding = None
if speaker_audio is not None:
wav, sr = torchaudio.load(speaker_audio)
speaker_embedding = (
MODEL.make_speaker_embedding(wav, sr).to(device, dtype=torch.bfloat16)
)
emotion_tensor = torch.tensor(
[e1, e2, e3, e4, e5, e6, e7, e8], device=device, dtype=torch.float32
)
vq_tensor = torch.tensor([clarity] * 8, device=device, dtype=torch.float32).unsqueeze(
0
)
cond_dict = make_cond_dict(
text=text,
language=language,
speaker=speaker_embedding,
emotion=emotion_tensor,
vqscore_8=vq_tensor,
fmax=float(fmax),
pitch_std=float(pitch_std),
speaking_rate=float(speaking_rate),
dnsmos_ovrl=float(dnsmos_ovrl),
device=device,
)
conditioning = MODEL.prepare_conditioning(cond_dict)
estimated_total_steps = int(steps)
def cb(_, step, __):
progress((step, estimated_total_steps))
return True
codes = MODEL.generate(
prefix_conditioning=conditioning,
max_new_tokens=int(steps),
cfg_scale=float(cfg_scale),
batch_size=1,
sampling_params=dict(min_p=float(min_p)),
callback=cb,
)
wav_out = MODEL.autoencoder.decode(codes).cpu().detach()
sr_out = MODEL.autoencoder.sampling_rate
if wav_out.dim() == 2 and wav_out.size(0) > 1:
wav_out = wav_out[0:1, :]
return (sr_out, wav_out.squeeze().numpy()), seed
def build_interface():
with gr.Blocks() as demo:
text = gr.Textbox(label="text", value="hello, world!", lines=4, max_length=500)
language = gr.Dropdown(choices=supported_language_codes, value="en-us", label="language")
speaker_audio = gr.Audio(label="voice reference", type="filepath")
clarity_slider = gr.Slider(0.5, 0.8, 0.8, 0.01, label="clarity")
steps_slider = gr.Slider(1, 3000, 300, 1, label="steps")
dnsmos_slider = gr.Slider(1.0, 5.0, 5.0, 0.1, label="quality")
fmax_slider = gr.Slider(0, 24000, 24000, 1, label="fmax")
pitch_std_slider = gr.Slider(0.0, 300.0, 30.0, 1, label="pitch std")
speaking_rate_slider = gr.Slider(5.0, 30.0, 15.0, 0.1, label="rate")
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.5, 0.1, label="guidance")
min_p_slider = gr.Slider(0.0, 1.0, 0.05, 0.01, label="min p")
with gr.Row():
e1 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="happy")
e2 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="sad")
e3 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="disgust")
e4 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="fear")
with gr.Row():
e5 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="surprise")
e6 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="anger")
e7 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="other")
e8 = gr.Slider(0.0, 1.0, 1.0, 0.01, label="neutral")
seed_number = gr.Number(label="seed", value=420, precision=0)
randomize_seed_toggle = gr.Checkbox(label="randomize seed", value=True)
generate_button = gr.Button("generate")
output_audio = gr.Audio(label="output", type="numpy", autoplay=True)
generate_button.click(
fn=generate_audio,
inputs=[
text,
language,
speaker_audio,
e1,
e2,
e3,
e4,
e5,
e6,
e7,
e8,
clarity_slider,
fmax_slider,
pitch_std_slider,
speaking_rate_slider,
dnsmos_slider,
cfg_scale_slider,
min_p_slider,
steps_slider,
seed_number,
randomize_seed_toggle,
],
outputs=[output_audio, seed_number],
)
return demo
if __name__ == "__main__":
build_interface().launch()