Spaces:
Running
on
Zero
Running
on
Zero
import os, torch, torchaudio, gradio as gr | |
import spaces | |
from zonos.model import Zonos | |
from zonos.conditioning import make_cond_dict, supported_language_codes | |
device = "cuda" | |
MODEL_NAME = "Zyphra/Zonos-v0.1-transformer" | |
MODEL = Zonos.from_pretrained(MODEL_NAME, device=device) | |
# def _patch_cuda_props(): | |
# if torch.cuda.is_available(): | |
# for i in range(torch.cuda.device_count()): | |
# p = torch.cuda.get_device_properties(i) | |
# if not hasattr(p, "regs_per_multiprocessor"): | |
# setattr(p, "regs_per_multiprocessor", 65536) | |
# if not hasattr(p, "max_threads_per_multi_processor"): | |
# setattr(p, "max_threads_per_multi_processor", 2048) | |
# _patch_cuda_props() | |
def generate_audio( | |
text, | |
language, | |
speaker_audio, | |
e1, | |
e2, | |
e3, | |
e4, | |
e5, | |
e6, | |
e7, | |
e8, | |
clarity, | |
fmax, | |
pitch_std, | |
speaking_rate, | |
dnsmos_ovrl, | |
cfg_scale, | |
min_p, | |
steps, | |
seed, | |
randomize_seed, | |
progress=gr.Progress(), | |
): | |
if randomize_seed: | |
seed = torch.randint(0, 2**32 - 1, (1,)).item() | |
torch.manual_seed(int(seed)) | |
speaker_embedding = None | |
if speaker_audio is not None: | |
wav, sr = torchaudio.load(speaker_audio) | |
speaker_embedding = ( | |
MODEL.make_speaker_embedding(wav, sr).to(device, dtype=torch.bfloat16) | |
) | |
emotion_tensor = torch.tensor( | |
[e1, e2, e3, e4, e5, e6, e7, e8], device=device, dtype=torch.float32 | |
) | |
vq_tensor = torch.tensor([clarity] * 8, device=device, dtype=torch.float32).unsqueeze( | |
0 | |
) | |
cond_dict = make_cond_dict( | |
text=text, | |
language=language, | |
speaker=speaker_embedding, | |
emotion=emotion_tensor, | |
vqscore_8=vq_tensor, | |
fmax=float(fmax), | |
pitch_std=float(pitch_std), | |
speaking_rate=float(speaking_rate), | |
dnsmos_ovrl=float(dnsmos_ovrl), | |
device=device, | |
) | |
conditioning = MODEL.prepare_conditioning(cond_dict) | |
estimated_total_steps = int(steps) | |
def cb(_, step, __): | |
progress((step, estimated_total_steps)) | |
return True | |
codes = MODEL.generate( | |
prefix_conditioning=conditioning, | |
max_new_tokens=int(steps), | |
cfg_scale=float(cfg_scale), | |
batch_size=1, | |
sampling_params=dict(min_p=float(min_p)), | |
callback=cb, | |
) | |
wav_out = MODEL.autoencoder.decode(codes).cpu().detach() | |
sr_out = MODEL.autoencoder.sampling_rate | |
if wav_out.dim() == 2 and wav_out.size(0) > 1: | |
wav_out = wav_out[0:1, :] | |
return (sr_out, wav_out.squeeze().numpy()), seed | |
def build_interface(): | |
with gr.Blocks() as demo: | |
text = gr.Textbox(label="text", value="hello, world!", lines=4, max_length=500) | |
language = gr.Dropdown(choices=supported_language_codes, value="en-us", label="language") | |
speaker_audio = gr.Audio(label="voice reference", type="filepath") | |
clarity_slider = gr.Slider(0.5, 0.8, 0.8, 0.01, label="clarity") | |
steps_slider = gr.Slider(1, 3000, 300, 1, label="steps") | |
dnsmos_slider = gr.Slider(1.0, 5.0, 5.0, 0.1, label="quality") | |
fmax_slider = gr.Slider(0, 24000, 24000, 1, label="fmax") | |
pitch_std_slider = gr.Slider(0.0, 300.0, 30.0, 1, label="pitch std") | |
speaking_rate_slider = gr.Slider(5.0, 30.0, 15.0, 0.1, label="rate") | |
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.5, 0.1, label="guidance") | |
min_p_slider = gr.Slider(0.0, 1.0, 0.05, 0.01, label="min p") | |
with gr.Row(): | |
e1 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="happy") | |
e2 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="sad") | |
e3 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="disgust") | |
e4 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="fear") | |
with gr.Row(): | |
e5 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="surprise") | |
e6 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="anger") | |
e7 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="other") | |
e8 = gr.Slider(0.0, 1.0, 1.0, 0.01, label="neutral") | |
seed_number = gr.Number(label="seed", value=420, precision=0) | |
randomize_seed_toggle = gr.Checkbox(label="randomize seed", value=True) | |
generate_button = gr.Button("generate") | |
output_audio = gr.Audio(label="output", type="numpy", autoplay=True) | |
generate_button.click( | |
fn=generate_audio, | |
inputs=[ | |
text, | |
language, | |
speaker_audio, | |
e1, | |
e2, | |
e3, | |
e4, | |
e5, | |
e6, | |
e7, | |
e8, | |
clarity_slider, | |
fmax_slider, | |
pitch_std_slider, | |
speaking_rate_slider, | |
dnsmos_slider, | |
cfg_scale_slider, | |
min_p_slider, | |
steps_slider, | |
seed_number, | |
randomize_seed_toggle, | |
], | |
outputs=[output_audio, seed_number], | |
) | |
return demo | |
if __name__ == "__main__": | |
build_interface().launch() |