Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import base64
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
import time
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Your endpoint URL and token (you might want to use environment variables for these in production)
|
10 |
+
API_URL = "https://ca80xvp8jmhqanbz.us-east-1.aws.endpoints.huggingface.cloud"
|
11 |
+
|
12 |
+
def process_image(input_image, prompt):
|
13 |
+
# Convert Gradio's image input to base64
|
14 |
+
if input_image is None:
|
15 |
+
return None, "Please upload an image"
|
16 |
+
|
17 |
+
# Convert PIL Image to bytes
|
18 |
+
img_byte_arr = io.BytesIO()
|
19 |
+
input_image.save(img_byte_arr, format='WEBP')
|
20 |
+
img_byte_arr = img_byte_arr.getvalue()
|
21 |
+
|
22 |
+
# Encode to base64
|
23 |
+
base64_image = f"data:image/webp;base64,{base64.b64encode(img_byte_arr).decode('utf-8')}"
|
24 |
+
|
25 |
+
# Prepare headers and data
|
26 |
+
headers = {
|
27 |
+
"Authorization": f"Bearer {os.getenv('HF_API_KEY')}",
|
28 |
+
"Content-Type": "application/json",
|
29 |
+
"Accept": "application/json"
|
30 |
+
}
|
31 |
+
|
32 |
+
data = {
|
33 |
+
"inputs": {
|
34 |
+
"prompt": prompt,
|
35 |
+
"image": base64_image
|
36 |
+
}
|
37 |
+
}
|
38 |
+
|
39 |
+
# Make the API request with retry mechanism
|
40 |
+
max_retries = 5
|
41 |
+
retry_delay = 60 # seconds
|
42 |
+
|
43 |
+
for retry in range(max_retries):
|
44 |
+
try:
|
45 |
+
response = requests.post(API_URL, headers=headers, json=data, timeout=300)
|
46 |
+
|
47 |
+
if response.status_code == 200:
|
48 |
+
# Convert the response base64 image back to PIL Image
|
49 |
+
result = response.json()
|
50 |
+
image_bytes = base64.b64decode(result["final_image"])
|
51 |
+
output_image = Image.open(io.BytesIO(image_bytes))
|
52 |
+
|
53 |
+
# Return both the image and the parameters used
|
54 |
+
params_text = "\nParameters used:\n"
|
55 |
+
for key, value in result["parameters"].items():
|
56 |
+
params_text += f"{key}: {value}\n"
|
57 |
+
|
58 |
+
return output_image, params_text
|
59 |
+
|
60 |
+
elif response.status_code == 503:
|
61 |
+
if retry < max_retries - 1:
|
62 |
+
time.sleep(retry_delay)
|
63 |
+
continue
|
64 |
+
return None, f"Service unavailable after {max_retries} retries"
|
65 |
+
else:
|
66 |
+
return None, f"Error: {response.status_code}\n{response.text}"
|
67 |
+
|
68 |
+
except requests.exceptions.RequestException as e:
|
69 |
+
if retry < max_retries - 1:
|
70 |
+
time.sleep(retry_delay)
|
71 |
+
continue
|
72 |
+
return None, f"Request error: {str(e)}"
|
73 |
+
|
74 |
+
return None, "Maximum retries reached"
|
75 |
+
|
76 |
+
# Create Gradio interface
|
77 |
+
with gr.Blocks(title="Room Design Diffusion", theme=gr.themes.Soft()) as demo:
|
78 |
+
gr.Markdown("""
|
79 |
+
# Room Design Diffusion
|
80 |
+
Upload a room image and provide a prompt describing how you'd like to redesign it.
|
81 |
+
The AI will generate a new version of your room based on your description.
|
82 |
+
""")
|
83 |
+
|
84 |
+
with gr.Row():
|
85 |
+
with gr.Column():
|
86 |
+
input_image = gr.Image(label="Upload Room Image", type="pil")
|
87 |
+
prompt = gr.Textbox(
|
88 |
+
label="Describe how you want to redesign the room",
|
89 |
+
placeholder="Example: A modern living room with a comfortable gray sectional sofa, glass coffee table, minimalist TV stand, and geometric area rug",
|
90 |
+
lines=3
|
91 |
+
)
|
92 |
+
submit_btn = gr.Button("Generate Design", variant="primary")
|
93 |
+
|
94 |
+
with gr.Column():
|
95 |
+
output_image = gr.Image(label="Generated Design")
|
96 |
+
output_text = gr.Textbox(label="Processing Details", lines=5)
|
97 |
+
|
98 |
+
submit_btn.click(
|
99 |
+
fn=process_image,
|
100 |
+
inputs=[input_image, prompt],
|
101 |
+
outputs=[output_image, output_text]
|
102 |
+
)
|
103 |
+
|
104 |
+
gr.Markdown("""
|
105 |
+
### Tips for best results:
|
106 |
+
- Use clear, detailed prompts describing the desired room style
|
107 |
+
- Make sure the input image is well-lit and clearly shows the room
|
108 |
+
- Be patient as generation can take a few minutes
|
109 |
+
""")
|
110 |
+
|
111 |
+
# Launch the app
|
112 |
+
demo.launch(share=True)
|