import numpy as np import cv2 import torch from scipy.spatial.transform import Rotation as R import torch.nn.functional as F # Dictionary utils def _dict_merge(dicta, dictb, prefix=''): """ Merge two dictionaries. """ assert isinstance(dicta, dict), 'input must be a dictionary' assert isinstance(dictb, dict), 'input must be a dictionary' dict_ = {} all_keys = set(dicta.keys()).union(set(dictb.keys())) for key in all_keys: if key in dicta.keys() and key in dictb.keys(): if isinstance(dicta[key], dict) and isinstance(dictb[key], dict): dict_[key] = _dict_merge(dicta[key], dictb[key], prefix=f'{prefix}.{key}') else: raise ValueError(f'Duplicate key {prefix}.{key} found in both dictionaries. Types: {type(dicta[key])}, {type(dictb[key])}') elif key in dicta.keys(): dict_[key] = dicta[key] else: dict_[key] = dictb[key] return dict_ def dict_merge(dicta, dictb): """ Merge two dictionaries. """ return _dict_merge(dicta, dictb, prefix='') def dict_foreach(dic, func, special_func={}): """ Recursively apply a function to all non-dictionary leaf values in a dictionary. """ assert isinstance(dic, dict), 'input must be a dictionary' for key in dic.keys(): if isinstance(dic[key], dict): dic[key] = dict_foreach(dic[key], func) else: if key in special_func.keys(): dic[key] = special_func[key](dic[key]) else: dic[key] = func(dic[key]) return dic def dict_reduce(dicts, func, special_func={}): """ Reduce a list of dictionaries. Leaf values must be scalars. """ assert isinstance(dicts, list), 'input must be a list of dictionaries' assert all([isinstance(d, dict) for d in dicts]), 'input must be a list of dictionaries' assert len(dicts) > 0, 'input must be a non-empty list of dictionaries' all_keys = set([key for dict_ in dicts for key in dict_.keys()]) reduced_dict = {} for key in all_keys: vlist = [dict_[key] for dict_ in dicts if key in dict_.keys()] if isinstance(vlist[0], dict): reduced_dict[key] = dict_reduce(vlist, func, special_func) else: if key in special_func.keys(): reduced_dict[key] = special_func[key](vlist) else: reduced_dict[key] = func(vlist) return reduced_dict def dict_any(dic, func): """ Recursively apply a function to all non-dictionary leaf values in a dictionary. """ assert isinstance(dic, dict), 'input must be a dictionary' for key in dic.keys(): if isinstance(dic[key], dict): if dict_any(dic[key], func): return True else: if func(dic[key]): return True return False def dict_all(dic, func): """ Recursively apply a function to all non-dictionary leaf values in a dictionary. """ assert isinstance(dic, dict), 'input must be a dictionary' for key in dic.keys(): if isinstance(dic[key], dict): if not dict_all(dic[key], func): return False else: if not func(dic[key]): return False return True def dict_flatten(dic, sep='.'): """ Flatten a nested dictionary into a dictionary with no nested dictionaries. """ assert isinstance(dic, dict), 'input must be a dictionary' flat_dict = {} for key in dic.keys(): if isinstance(dic[key], dict): sub_dict = dict_flatten(dic[key], sep=sep) for sub_key in sub_dict.keys(): flat_dict[str(key) + sep + str(sub_key)] = sub_dict[sub_key] else: flat_dict[key] = dic[key] return flat_dict def make_grid(images, nrow=None, ncol=None, aspect_ratio=None): num_images = len(images) if nrow is None and ncol is None: if aspect_ratio is not None: nrow = int(np.round(np.sqrt(num_images / aspect_ratio))) else: nrow = int(np.sqrt(num_images)) ncol = (num_images + nrow - 1) // nrow elif nrow is None and ncol is not None: nrow = (num_images + ncol - 1) // ncol elif nrow is not None and ncol is None: ncol = (num_images + nrow - 1) // nrow else: assert nrow * ncol >= num_images, 'nrow * ncol must be greater than or equal to the number of images' grid = np.zeros((nrow * images[0].shape[0], ncol * images[0].shape[1], images[0].shape[2]), dtype=images[0].dtype) for i, img in enumerate(images): row = i // ncol col = i % ncol grid[row * img.shape[0]:(row + 1) * img.shape[0], col * img.shape[1]:(col + 1) * img.shape[1]] = img return grid def notes_on_image(img, notes=None): img = np.pad(img, ((0, 32), (0, 0), (0, 0)), 'constant', constant_values=0) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) if notes is not None: img = cv2.putText(img, notes, (0, img.shape[0] - 4), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def save_image_with_notes(img, path, notes=None): """ Save an image with notes. """ if isinstance(img, torch.Tensor): img = img.cpu().numpy().transpose(1, 2, 0) if img.dtype == np.float32 or img.dtype == np.float64: img = np.clip(img * 255, 0, 255).astype(np.uint8) img = notes_on_image(img, notes) cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) # debug utils def atol(x, y): """ Absolute tolerance. """ return torch.abs(x - y) def rtol(x, y): """ Relative tolerance. """ return torch.abs(x - y) / torch.clamp_min(torch.maximum(torch.abs(x), torch.abs(y)), 1e-12) # print utils def indent(s, n=4): """ Indent a string. """ lines = s.split('\n') for i in range(1, len(lines)): lines[i] = ' ' * n + lines[i] return '\n'.join(lines) def rotation2quad(matrix: torch.Tensor) -> torch.Tensor: """ Convert rotations given as rotation matrices to quaternions. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). Returns: quaternions with real part first, as tensor of shape (..., 4). Source: https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#matrix_to_quaternion """ if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") if not isinstance(matrix, torch.Tensor): matrix = torch.tensor(matrix).cuda() batch_dim = matrix.shape[:-2] m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( matrix.reshape(batch_dim + (9,)), dim=-1 ) q_abs = _sqrt_positive_part( torch.stack( [ 1.0 + m00 + m11 + m22, 1.0 + m00 - m11 - m22, 1.0 - m00 + m11 - m22, 1.0 - m00 - m11 + m22, ], dim=-1, ) ) # we produce the desired quaternion multiplied by each of r, i, j, k quat_by_rijk = torch.stack( [ # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), ], dim=-2, ) # We floor here at 0.1 but the exact level is not important; if q_abs is small, # the candidate won't be picked. flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) # if not for numerical problems, quat_candidates[i] should be same (up to a sign), # forall i; we pick the best-conditioned one (with the largest denominator) return quat_candidates[ F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : ].reshape(batch_dim + (4,)) def quad2rotation(q): """ Convert quaternion to rotation in batch. Since all operation in pytorch, support gradient passing. Args: quad (tensor, batch_size*4): quaternion. Returns: rot_mat (tensor, batch_size*3*3): rotation. """ # bs = quad.shape[0] # qr, qi, qj, qk = quad[:, 0], quad[:, 1], quad[:, 2], quad[:, 3] # two_s = 2.0 / (quad * quad).sum(-1) # rot_mat = torch.zeros(bs, 3, 3).to(quad.get_device()) # rot_mat[:, 0, 0] = 1 - two_s * (qj**2 + qk**2) # rot_mat[:, 0, 1] = two_s * (qi * qj - qk * qr) # rot_mat[:, 0, 2] = two_s * (qi * qk + qj * qr) # rot_mat[:, 1, 0] = two_s * (qi * qj + qk * qr) # rot_mat[:, 1, 1] = 1 - two_s * (qi**2 + qk**2) # rot_mat[:, 1, 2] = two_s * (qj * qk - qi * qr) # rot_mat[:, 2, 0] = two_s * (qi * qk - qj * qr) # rot_mat[:, 2, 1] = two_s * (qj * qk + qi * qr) # rot_mat[:, 2, 2] = 1 - two_s * (qi**2 + qj**2) # return rot_mat if not isinstance(q, torch.Tensor): q = torch.tensor(q).cuda() norm = torch.sqrt( q[:, 0] * q[:, 0] + q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] + q[:, 3] * q[:, 3] ) q = q / norm[:, None] rot = torch.zeros((q.size(0), 3, 3)).to(q) r = q[:, 0] x = q[:, 1] y = q[:, 2] z = q[:, 3] rot[:, 0, 0] = 1 - 2 * (y * y + z * z) rot[:, 0, 1] = 2 * (x * y - r * z) rot[:, 0, 2] = 2 * (x * z + r * y) rot[:, 1, 0] = 2 * (x * y + r * z) rot[:, 1, 1] = 1 - 2 * (x * x + z * z) rot[:, 1, 2] = 2 * (y * z - r * x) rot[:, 2, 0] = 2 * (x * z - r * y) rot[:, 2, 1] = 2 * (y * z + r * x) rot[:, 2, 2] = 1 - 2 * (x * x + y * y) return rot def perform_rodrigues_transformation(rvec): try: R, _ = cv2.Rodrigues(rvec) return R except cv2.error as e: return False def euler2rot(euler): r = R.from_euler('xyz', euler, degrees=True) rotation_matrix = r.as_matrix() return rotation_matrix def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: """ Returns torch.sqrt(torch.max(0, x)) but with a zero subgradient where x is 0. """ ret = torch.zeros_like(x) positive_mask = x > 0 ret[positive_mask] = torch.sqrt(x[positive_mask]) return ret def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor: """ Convert rotations given as rotation matrices to quaternions. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). Returns: quaternions with real part first, as tensor of shape (..., 4). """ if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") batch_dim = matrix.shape[:-2] m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( matrix.reshape(batch_dim + (9,)), dim=-1 ) q_abs = _sqrt_positive_part( torch.stack( [ 1.0 + m00 + m11 + m22, 1.0 + m00 - m11 - m22, 1.0 - m00 + m11 - m22, 1.0 - m00 - m11 + m22, ], dim=-1, ) ) # we produce the desired quaternion multiplied by each of r, i, j, k quat_by_rijk = torch.stack( [ # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), ], dim=-2, ) # We floor here at 0.1 but the exact level is not important; if q_abs is small, # the candidate won't be picked. flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) # if not for numerical problems, quat_candidates[i] should be same (up to a sign), # forall i; we pick the best-conditioned one (with the largest denominator) return quat_candidates[ F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : ].reshape(batch_dim + (4,)) def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor: """ Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). """ r, i, j, k = torch.unbind(quaternions, -1) # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3))