import importlib __attributes = { 'SparseStructureEncoder': 'sparse_structure_vae', 'SparseStructureDecoder': 'sparse_structure_vae', 'SparseStructureFlowModel': 'sparse_structure_flow', 'SLatEncoder': 'structured_latent_vae', 'SLatGaussianDecoder': 'structured_latent_vae', 'SLatMeshDecoder': 'structured_latent_vae', 'SLatFlowModel': 'structured_latent_flow', 'ModulatedMultiViewCond': 'sparse_structure_flow', } __submodules = [] __all__ = list(__attributes.keys()) + __submodules def __getattr__(name): if name not in globals(): if name in __attributes: module_name = __attributes[name] module = importlib.import_module(f".{module_name}", __name__) globals()[name] = getattr(module, name) elif name in __submodules: module = importlib.import_module(f".{name}", __name__) globals()[name] = module else: raise AttributeError(f"module {__name__} has no attribute {name}") return globals()[name] def from_pretrained(path: str, **kwargs): """ Load a model from a pretrained checkpoint. Args: path: The path to the checkpoint. Can be either local path or a Hugging Face model name. NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively. **kwargs: Additional arguments for the model constructor. """ import os import json from safetensors.torch import load_file is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors") if is_local: config_file = f"{path}.json" model_file = f"{path}.safetensors" else: from huggingface_hub import hf_hub_download path_parts = path.split('/') repo_id = f'{path_parts[0]}/{path_parts[1]}' model_name = '/'.join(path_parts[2:]) config_file = hf_hub_download(repo_id, f"{model_name}.json") model_file = hf_hub_download(repo_id, f"{model_name}.safetensors") with open(config_file, 'r') as f: config = json.load(f) model = __getattr__(config['name'])(**config['args'], **kwargs) model.load_state_dict(load_file(model_file), strict=False) return model def save_finetuned_model(model, output_dir: str): """ Save a fine-tuned model's state_dict as safetensors with a timestamp. Args: model: The model to be saved. output_dir: The directory where the model's state_dict will be saved. The file will be saved as f'{output_dir}/{timestamp}.safetensors'. """ from safetensors.torch import save_file import os from datetime import datetime if not os.path.exists(output_dir): os.makedirs(output_dir) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") save_file(model.state_dict(), f"{output_dir}/{timestamp}.safetensors") # For Pylance if __name__ == '__main__': from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder from .sparse_structure_flow import SparseStructureFlowModel, ModulatedMultiViewCond from .structured_latent_vae import SLatEncoder, SLatGaussianDecoder, SLatMeshDecoder from .structured_latent_flow import SLatFlowModel