import gradio as gr import spaces from gradio_litmodel3d import LitModel3D import os import shutil os.environ['SPCONV_ALGO'] = 'native' from typing import * import torch import numpy as np import imageio from easydict import EasyDict as edict from PIL import Image from trellis.pipelines import TrellisVGGTTo3DPipeline from trellis.representations import Gaussian, MeshExtractResult from trellis.utils import render_utils, postprocessing_utils MAX_SEED = np.iinfo(np.int32).max TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') # TMP_DIR = "tmp/Trellis-demo" # os.environ['GRADIO_TEMP_DIR'] = 'tmp' os.makedirs(TMP_DIR, exist_ok=True) def start_session(req: gr.Request): user_dir = os.path.join(TMP_DIR, str(req.session_hash)) os.makedirs(user_dir, exist_ok=True) def end_session(req: gr.Request): user_dir = os.path.join(TMP_DIR, str(req.session_hash)) shutil.rmtree(user_dir) @spaces.GPU def preprocess_image(image: Image.Image) -> Image.Image: """ Preprocess the input image for 3D generation. This function is called when a user uploads an image or selects an example. It applies background removal and other preprocessing steps necessary for optimal 3D model generation. Args: image (Image.Image): The input image from the user Returns: Image.Image: The preprocessed image ready for 3D generation """ processed_image = pipeline.preprocess_image(image) return processed_image @spaces.GPU def preprocess_videos(video: str) -> List[Tuple[Image.Image, str]]: """ Preprocess the input video for multi-image 3D generation. This function is called when a user uploads a video. It extracts frames from the video and processes each frame to prepare them for the multi-image 3D generation pipeline. Args: video (str): The path to the input video file Returns: List[Tuple[Image.Image, str]]: The list of preprocessed images ready for 3D generation """ vid = imageio.get_reader(video, 'ffmpeg') fps = vid.get_meta_data()['fps'] images = [] for i, frame in enumerate(vid): if i % max(int(fps * 1), 1) == 0: img = Image.fromarray(frame) W, H = img.size img = img.resize((int(W / H * 512), 512)) images.append(img) vid.close() processed_images = [pipeline.preprocess_image(image) for image in images] return processed_images @spaces.GPU def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]: """ Preprocess a list of input images for multi-image 3D generation. This function is called when users upload multiple images in the gallery. It processes each image to prepare them for the multi-image 3D generation pipeline. Args: images (List[Tuple[Image.Image, str]]): The input images from the gallery Returns: List[Image.Image]: The preprocessed images ready for 3D generation """ images = [image[0] for image in images] processed_images = [pipeline.preprocess_image(image) for image in images] return processed_images def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: return { 'gaussian': { **gs.init_params, '_xyz': gs._xyz.cpu().numpy(), '_features_dc': gs._features_dc.cpu().numpy(), '_scaling': gs._scaling.cpu().numpy(), '_rotation': gs._rotation.cpu().numpy(), '_opacity': gs._opacity.cpu().numpy(), }, 'mesh': { 'vertices': mesh.vertices.cpu().numpy(), 'faces': mesh.faces.cpu().numpy(), }, } def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: gs = Gaussian( aabb=state['gaussian']['aabb'], sh_degree=state['gaussian']['sh_degree'], mininum_kernel_size=state['gaussian']['mininum_kernel_size'], scaling_bias=state['gaussian']['scaling_bias'], opacity_bias=state['gaussian']['opacity_bias'], scaling_activation=state['gaussian']['scaling_activation'], ) gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') mesh = edict( vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), faces=torch.tensor(state['mesh']['faces'], device='cuda'), ) return gs, mesh def get_seed(randomize_seed: bool, seed: int) -> int: """ Get the random seed for generation. This function is called by the generate button to determine whether to use a random seed or the user-specified seed value. Args: randomize_seed (bool): Whether to generate a random seed seed (int): The user-specified seed value Returns: int: The seed to use for generation """ return np.random.randint(0, MAX_SEED) if randomize_seed else seed @spaces.GPU(duration=120) def generate_and_extract_glb( multiimages: List[Tuple[Image.Image, str]], seed: int, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int, multiimage_algo: Literal["multidiffusion", "stochastic"], mesh_simplify: float, texture_size: int, req: gr.Request, ) -> Tuple[dict, str, str, str]: """ Convert an image to a 3D model and extract GLB file. Args: image (Image.Image): The input image. multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode. is_multiimage (bool): Whether is in multi-image mode. seed (int): The random seed. ss_guidance_strength (float): The guidance strength for sparse structure generation. ss_sampling_steps (int): The number of sampling steps for sparse structure generation. slat_guidance_strength (float): The guidance strength for structured latent generation. slat_sampling_steps (int): The number of sampling steps for structured latent generation. multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation. mesh_simplify (float): The mesh simplification factor. texture_size (int): The texture resolution. Returns: dict: The information of the generated 3D model. str: The path to the video of the 3D model. str: The path to the extracted GLB file. str: The path to the extracted GLB file (for download). """ user_dir = os.path.join(TMP_DIR, str(req.session_hash)) image_files = [image[0] for image in multiimages] # Generate 3D model outputs = pipeline.run( image=image_files, seed=seed, formats=["gaussian", "mesh"], preprocess_image=False, sparse_structure_sampler_params={ "steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength, }, slat_sampler_params={ "steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength, }, mode=multiimage_algo, ) # Render video video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] video_path = os.path.join(user_dir, 'sample.mp4') imageio.mimsave(video_path, video, fps=15) # Extract GLB gs = outputs['gaussian'][0] mesh = outputs['mesh'][0] glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) glb_path = os.path.join(user_dir, 'sample.glb') glb.export(glb_path) # Pack state for optional Gaussian extraction state = pack_state(gs, mesh) torch.cuda.empty_cache() return state, video_path, glb_path, glb_path @spaces.GPU def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: """ Extract a Gaussian splatting file from the generated 3D model. This function is called when the user clicks "Extract Gaussian" button. It converts the 3D model state into a .ply file format containing Gaussian splatting data for advanced 3D applications. Args: state (dict): The state of the generated 3D model containing Gaussian data req (gr.Request): Gradio request object for session management Returns: Tuple[str, str]: Paths to the extracted Gaussian file (for display and download) """ user_dir = os.path.join(TMP_DIR, str(req.session_hash)) gs, _ = unpack_state(state) gaussian_path = os.path.join(user_dir, 'sample.ply') gs.save_ply(gaussian_path) torch.cuda.empty_cache() return gaussian_path, gaussian_path def prepare_multi_example() -> List[Image.Image]: multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")])) images = [] for case in multi_case: _images = [] for i in range(1, 9): if os.path.exists(f'assets/example_multi_image/{case}_{i}.png'): img = Image.open(f'assets/example_multi_image/{case}_{i}.png') W, H = img.size img = img.resize((int(W / H * 512), 512)) _images.append(np.array(img)) if len(_images) > 0: images.append(Image.fromarray(np.concatenate(_images, axis=1))) return images def split_image(image: Image.Image) -> List[Image.Image]: """ Split a multi-view image into separate view images. This function is called when users select multi-image examples that contain multiple views in a single concatenated image. It automatically splits them based on alpha channel boundaries and preprocesses each view. Args: image (Image.Image): A concatenated image containing multiple views Returns: List[Image.Image]: List of individual preprocessed view images """ image = np.array(image) alpha = image[..., 3] alpha = np.any(alpha>0, axis=0) start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist() end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist() images = [] for s, e in zip(start_pos, end_pos): images.append(Image.fromarray(image[:, s:e+1])) return [preprocess_image(image) for image in images] # Create interface demo = gr.Blocks( title="ReconViaGen", css=""" .slider .inner { width: 5px; background: #FFF; } .viewport { aspect-ratio: 4/3; } .tabs button.selected { font-size: 20px !important; color: crimson !important; } h1, h2, h3 { text-align: center; display: block; } .md_feedback li { margin-bottom: 0px !important; } """ ) with demo: gr.Markdown(""" # 💻 ReconViaGen
✨This demo is partial. We will release the whole model later. Stay tuned!✨ """) with gr.Row(): with gr.Column(): with gr.Tabs() as input_tabs: with gr.Tab(label="Input Video or Images", id=0) as multiimage_input_tab: input_video = gr.Video(label="Upload Video", interactive=True, height=300) image_prompt = gr.Image(label="Image Prompt", format="png", visible=False, image_mode="RGBA", type="pil", height=300) multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3) gr.Markdown(""" Input different views of the object in separate images. *NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.* """) with gr.Accordion(label="Generation Settings", open=False): seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) randomize_seed = gr.Checkbox(label="Randomize Seed", value=False) gr.Markdown("Stage 1: Sparse Structure Generation") with gr.Row(): ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=30, step=1) gr.Markdown("Stage 2: Structured Latent Generation") with gr.Row(): slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="multidiffusion") with gr.Accordion(label="GLB Extraction Settings", open=False): mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) generate_btn = gr.Button("Generate & Extract GLB", variant="primary") extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) gr.Markdown(""" *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* """) with gr.Column(): video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300) with gr.Row(): download_glb = gr.DownloadButton(label="Download GLB", interactive=False) download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) output_buf = gr.State() # Example images at the bottom of the page with gr.Row() as multiimage_example: examples_multi = gr.Examples( examples=prepare_multi_example(), inputs=[image_prompt], fn=split_image, outputs=[multiimage_prompt], run_on_click=True, examples_per_page=8, ) # Handlers demo.load(start_session) demo.unload(end_session) input_video.upload( preprocess_videos, inputs=[input_video], outputs=[multiimage_prompt], ) input_video.clear( lambda: tuple([None, None]), outputs=[input_video, multiimage_prompt], ) multiimage_prompt.upload( preprocess_images, inputs=[multiimage_prompt], outputs=[multiimage_prompt], ) generate_btn.click( get_seed, inputs=[randomize_seed, seed], outputs=[seed], ).then( generate_and_extract_glb, inputs=[multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size], outputs=[output_buf, video_output, model_output, download_glb], ).then( lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), outputs=[extract_gs_btn, download_glb], ) video_output.clear( lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False), gr.Button(interactive=False)]), outputs=[extract_gs_btn, download_glb, download_gs], ) extract_gs_btn.click( extract_gaussian, inputs=[output_buf], outputs=[model_output, download_gs], ).then( lambda: gr.Button(interactive=True), outputs=[download_gs], ) model_output.clear( lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), outputs=[download_glb, download_gs], ) # Launch the Gradio app if __name__ == "__main__": pipeline = TrellisVGGTTo3DPipeline.from_pretrained("Stable-X/trellis-vggt-v0-1") pipeline.cuda() pipeline.VGGT_model.cuda() pipeline.birefnet_model.cuda() demo.launch()