ReconViaGen / trellis /utils /render_utils.py
Stable-X's picture
Upload 288 files
f3ff4f1 verified
import torch
import numpy as np
from tqdm import tqdm
import utils3d
from PIL import Image
from ..renderers import MeshRenderer
from ..representations import Octree, Gaussian, MeshExtractResult
from .random_utils import sphere_hammersley_sequence
def yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, rs, fovs, device='cuda'):
is_list = isinstance(yaws, list)
if not is_list:
yaws = [yaws]
pitchs = [pitchs]
if not isinstance(rs, list):
rs = [rs] * len(yaws)
if not isinstance(fovs, list):
fovs = [fovs] * len(yaws)
extrinsics = []
intrinsics = []
for yaw, pitch, r, fov in zip(yaws, pitchs, rs, fovs):
fov = torch.deg2rad(torch.tensor(float(fov))).to(device)
yaw = torch.tensor(float(yaw)).to(device)
pitch = torch.tensor(float(pitch)).to(device)
orig = torch.tensor([
torch.sin(yaw) * torch.cos(pitch),
torch.cos(yaw) * torch.cos(pitch),
torch.sin(pitch),
]).to(device) * r
extr = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().to(device), torch.tensor([0, 0, 1]).float().to(device))
intr = utils3d.torch.intrinsics_from_fov_xy(fov, fov)
extrinsics.append(extr)
intrinsics.append(intr)
if not is_list:
extrinsics = extrinsics[0]
intrinsics = intrinsics[0]
return extrinsics, intrinsics
def render_frames(sample, extrinsics, intrinsics, options={}, colors_overwrite=None, verbose=True, need_depth=False, opt=False, **kwargs):
if isinstance(sample, MeshExtractResult):
renderer = MeshRenderer()
renderer.rendering_options.resolution = options.get('resolution', 1024)
renderer.rendering_options.near = options.get('near', 1)
renderer.rendering_options.far = options.get('far', 100)
renderer.rendering_options.ssaa = options.get('ssaa', 4)
elif isinstance(sample, Gaussian):
# from ..renderers import GSplatRenderer, GaussianRenderer
# renderer = GSplatRenderer()
from ..renderers import GaussianRenderer
renderer = GaussianRenderer()
renderer.rendering_options.resolution = options.get('resolution', 1024)
renderer.rendering_options.near = options.get('near', 0.8)
renderer.rendering_options.far = options.get('far', 1.6)
renderer.rendering_options.bg_color = options.get('bg_color', (0, 0, 0))
renderer.rendering_options.ssaa = options.get('ssaa', 1)
renderer.pipe.kernel_size = kwargs.get('kernel_size', 0.1)
renderer.pipe.use_mip_gaussian = True
elif isinstance(sample, Octree):
from ..renderers import OctreeRenderer
renderer = OctreeRenderer()
renderer.rendering_options.resolution = options.get('resolution', 512)
renderer.rendering_options.near = options.get('near', 0.8)
renderer.rendering_options.far = options.get('far', 1.6)
renderer.rendering_options.bg_color = options.get('bg_color', (0, 0, 0))
renderer.rendering_options.ssaa = options.get('ssaa', 4)
renderer.pipe.primitive = sample.primitive
else:
raise ValueError(f'Unsupported sample type: {type(sample)}')
rets = {}
for j, (extr, intr) in tqdm(enumerate(zip(extrinsics, intrinsics)), desc='Rendering', disable=not verbose):
if not isinstance(sample, MeshExtractResult):
res = renderer.render(sample, extr, intr, colors_overwrite=colors_overwrite, need_depth=need_depth)
if 'color' not in rets: rets['color'] = []
if 'depth' not in rets: rets['depth'] = []
rets['color'].append(res['color'].clamp(0, 1) if opt else \
np.clip(res['color'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
if 'percent_depth' in res:
rets['depth'].append(res['percent_depth'] if opt else res['percent_depth'].detach().cpu().numpy())
elif 'depth' in res:
rets['depth'].append(res['depth'] if opt else res['depth'].detach().cpu().numpy())
else:
rets['depth'].append(None)
else:
return_types = kwargs.get('return_types', ["color", "normal", "nocs", "depth", "mask"])
res = renderer.render(sample, extr, intr, return_types = return_types)
if 'normal' not in rets: rets['normal'] = []
if 'color' not in rets: rets['color'] = []
if 'nocs' not in rets: rets['nocs'] = []
if 'depth' not in rets: rets['depth'] = []
if 'mask' not in rets: rets['mask'] = []
if 'color' in return_types:
rets['color'].append(res['color'].clamp(0,1) if opt else \
np.clip(res['color'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
rets['normal'].append(res['normal'].clamp(0,1) if opt else \
np.clip(res['normal'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
rets['nocs'].append(res['nocs'].clamp(0,1) if opt else \
np.clip(res['nocs'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
rets['depth'].append(res['depth'] if opt else \
res['depth'].detach().cpu().numpy())
rets['mask'].append(res['mask'].detach().cpu().numpy().astype(np.uint8))
return rets
def render_orth_frames(sample, extrinsics, projections, options={}, colors_overwrite=None, verbose=True, **kwargs):
# Select renderer according to sample type
if isinstance(sample, MeshExtractResult):
renderer = MeshRenderer()
renderer.rendering_options.resolution = options.get('resolution', 1024)
renderer.rendering_options.ssaa = options.get('ssaa', 4)
else:
raise ValueError(f'Unsupported sample type: {type(sample)}')
rets = {}
for j, extr in tqdm(enumerate(extrinsics), desc='Rendering Orthographic', disable=not verbose):
res = renderer.render(sample, extr, None, perspective=projections[j], return_types=["normal", "nocs", "depth"])
if 'normal' not in rets:
rets['normal'] = []
if 'color' not in rets:
rets['color'] = []
if 'nocs' not in rets:
rets['nocs'] = []
if 'depth' not in rets:
rets['depth'] = []
rets['normal'].append(np.clip(
res['normal'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
).astype(np.uint8))
rets['nocs'].append(np.clip(
res['nocs'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
).astype(np.uint8))
rets['depth'].append(res['depth'].detach().cpu().numpy())
return rets
def get_ortho_projection_matrix(left, right, bottom, top, near, far):
"""
使用 torch 创建正交投影矩阵, 使用标准的正交投影矩阵公式:
[ 2/(r-l) 0 0 -(r+l)/(r-l) ]
[ 0 2/(t-b) 0 -(t+b)/(t-b) ]
[ 0 0 -2/(f-n) -(f+n)/(f-n) ]
[ 0 0 0 1 ]
"""
projection_matrix = torch.zeros((4, 4), dtype=torch.float32)
projection_matrix[0, 0] = 2.0 / (right - left)
projection_matrix[1, 1] = 2.0 / (top - bottom)
projection_matrix[2, 2] = -2.0 / (far - near)
projection_matrix[3, 3] = 1.0
projection_matrix[0, 3] = -(right + left) / (right - left)
projection_matrix[1, 3] = -(top + bottom) / (top - bottom)
projection_matrix[2, 3] = (far + near) / (far - near)
return projection_matrix
def intrinsics_to_projection(
intrinsics: torch.Tensor,
near: float,
far: float,
) -> torch.Tensor:
"""
OpenCV intrinsics to OpenGL perspective matrix
Args:
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
near (float): near plane to clip
far (float): far plane to clip
Returns:
(torch.Tensor): [4, 4] OpenGL perspective matrix
"""
fx, fy = intrinsics[0, 0], intrinsics[1, 1]
cx, cy = intrinsics[0, 2], intrinsics[1, 2]
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
ret[0, 0] = 2 * fx
ret[1, 1] = 2 * fy
ret[0, 2] = 2 * cx - 1
ret[1, 2] = - 2 * cy + 1
ret[2, 2] = far / (far - near)
ret[2, 3] = near * far / (near - far)
ret[3, 2] = 1.
return ret
def render_ortho_video(sample, resolution=512, ssaa=4, bg_color=(0, 0, 0), num_frames=300, r=2, inverse_direction=False, pitch=-1, **kwargs):
if inverse_direction:
yaws = torch.linspace(3.1415, -3.1415, num_frames)
else:
yaws = torch.linspace(0, 2 * 3.1415, num_frames)
if pitch != -1:
pitch = pitch * torch.ones(num_frames)
else:
pitch = 0.25 + 0.5 * torch.sin(torch.linspace(0, 2 * 3.1415, num_frames))
yaws = yaws.tolist()
pitchs = pitch.tolist()
ortho_scale = 0.6
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, r, 40)
projection = get_ortho_projection_matrix(-ortho_scale, ortho_scale, -ortho_scale, ortho_scale, 1e-6, 100).to(extrinsics[0].device)
projections = [projection] * num_frames
render_results = render_orth_frames(sample, extrinsics, projections, {'resolution': resolution, 'bg_color': bg_color, 'ssaa': ssaa}, **kwargs)
render_results.update({'extrinsics': extrinsics, 'intrinsics': None, 'projections': projections})
return render_results
def render_multiview(sample, resolution=518, ssaa=4, bg_color=(0, 0, 0), num_frames=30, r = 2, fov = 40, random_offset=False, only_color=False, **kwargs):
if random_offset:
yaws = []
pitchs = []
offset = (np.random.rand(), np.random.rand())
for i in range(num_frames):
y, p = sphere_hammersley_sequence(i, num_frames, offset)
yaws.append(y)
pitchs.append(p)
else:
cams = [sphere_hammersley_sequence(i, num_frames) for i in range(num_frames)]
yaws = [cam[0] for cam in cams]
pitchs = [cam[1] for cam in cams]
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, r, fov)
res = render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color, 'ssaa': ssaa}, **kwargs)
return res['color'] if only_color else res, extrinsics, intrinsics
def render_video(sample, resolution=512, ssaa=4, bg_color=(0, 0, 0), num_frames=300, r=2, fov=40,
inverse_direction=False, pitch=-1, **kwargs):
if inverse_direction:
yaws = torch.linspace(3.1415, -3.1415, num_frames)
# pitch = 0.25 + 0.5 * torch.sin(torch.linspace(2 * 3.1415, 0, num_frames))
else:
yaws = torch.linspace(0, 2 * 3.1415, num_frames)
if pitch != -1:
pitch = pitch * torch.ones(num_frames)
else:
pitch = 0.25 + 0.5 * torch.sin(torch.linspace(0, 2 * 3.1415, num_frames))
yaws = yaws.tolist()
pitch = pitch.tolist()
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitch, r, fov)
res = render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color, 'ssaa': ssaa}, **kwargs)
res.update({'extrinsics': extrinsics, 'intrinsics': intrinsics})
return res
def render_condition_images(sample, resolution=512, ssaa=4, bg_color=(0, 0, 0), num_frames=300, r=2, fov=40, **kwargs):
yaws = []
pitchs = []
offset = (np.random.rand(), np.random.rand())
for i in range(num_frames):
y, p = sphere_hammersley_sequence(i, num_frames, offset)
yaws.append(y)
pitchs.append(p)
fov_min, fov_max = 10, 70
radius_min = np.sqrt(3) / 2 / np.sin(fov_max / 360 * np.pi)
radius_max = np.sqrt(3) / 2 / np.sin(fov_min / 360 * np.pi)
k_min = 1 / radius_max**2
k_max = 1 / radius_min**2
ks = np.random.uniform(k_min, k_max, (1000000,))
radius = [1 / np.sqrt(k) for k in ks]
fov = [2 * np.arcsin(np.sqrt(3) / 2 / r) for r in radius]
fov = [value_in_radians * 180 / np.pi for value_in_radians in fov]
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, radius, fov)
return render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color, 'ssaa': ssaa}, **kwargs), extrinsics, intrinsics