ReconViaGen / trellis /utils /general_utils.py
Stable-X's picture
Upload 288 files
f3ff4f1 verified
raw
history blame
14.2 kB
import numpy as np
import cv2
import torch
from scipy.spatial.transform import Rotation as R
import torch.nn.functional as F
# Dictionary utils
def _dict_merge(dicta, dictb, prefix=''):
"""
Merge two dictionaries.
"""
assert isinstance(dicta, dict), 'input must be a dictionary'
assert isinstance(dictb, dict), 'input must be a dictionary'
dict_ = {}
all_keys = set(dicta.keys()).union(set(dictb.keys()))
for key in all_keys:
if key in dicta.keys() and key in dictb.keys():
if isinstance(dicta[key], dict) and isinstance(dictb[key], dict):
dict_[key] = _dict_merge(dicta[key], dictb[key], prefix=f'{prefix}.{key}')
else:
raise ValueError(f'Duplicate key {prefix}.{key} found in both dictionaries. Types: {type(dicta[key])}, {type(dictb[key])}')
elif key in dicta.keys():
dict_[key] = dicta[key]
else:
dict_[key] = dictb[key]
return dict_
def dict_merge(dicta, dictb):
"""
Merge two dictionaries.
"""
return _dict_merge(dicta, dictb, prefix='')
def dict_foreach(dic, func, special_func={}):
"""
Recursively apply a function to all non-dictionary leaf values in a dictionary.
"""
assert isinstance(dic, dict), 'input must be a dictionary'
for key in dic.keys():
if isinstance(dic[key], dict):
dic[key] = dict_foreach(dic[key], func)
else:
if key in special_func.keys():
dic[key] = special_func[key](dic[key])
else:
dic[key] = func(dic[key])
return dic
def dict_reduce(dicts, func, special_func={}):
"""
Reduce a list of dictionaries. Leaf values must be scalars.
"""
assert isinstance(dicts, list), 'input must be a list of dictionaries'
assert all([isinstance(d, dict) for d in dicts]), 'input must be a list of dictionaries'
assert len(dicts) > 0, 'input must be a non-empty list of dictionaries'
all_keys = set([key for dict_ in dicts for key in dict_.keys()])
reduced_dict = {}
for key in all_keys:
vlist = [dict_[key] for dict_ in dicts if key in dict_.keys()]
if isinstance(vlist[0], dict):
reduced_dict[key] = dict_reduce(vlist, func, special_func)
else:
if key in special_func.keys():
reduced_dict[key] = special_func[key](vlist)
else:
reduced_dict[key] = func(vlist)
return reduced_dict
def dict_any(dic, func):
"""
Recursively apply a function to all non-dictionary leaf values in a dictionary.
"""
assert isinstance(dic, dict), 'input must be a dictionary'
for key in dic.keys():
if isinstance(dic[key], dict):
if dict_any(dic[key], func):
return True
else:
if func(dic[key]):
return True
return False
def dict_all(dic, func):
"""
Recursively apply a function to all non-dictionary leaf values in a dictionary.
"""
assert isinstance(dic, dict), 'input must be a dictionary'
for key in dic.keys():
if isinstance(dic[key], dict):
if not dict_all(dic[key], func):
return False
else:
if not func(dic[key]):
return False
return True
def dict_flatten(dic, sep='.'):
"""
Flatten a nested dictionary into a dictionary with no nested dictionaries.
"""
assert isinstance(dic, dict), 'input must be a dictionary'
flat_dict = {}
for key in dic.keys():
if isinstance(dic[key], dict):
sub_dict = dict_flatten(dic[key], sep=sep)
for sub_key in sub_dict.keys():
flat_dict[str(key) + sep + str(sub_key)] = sub_dict[sub_key]
else:
flat_dict[key] = dic[key]
return flat_dict
def make_grid(images, nrow=None, ncol=None, aspect_ratio=None):
num_images = len(images)
if nrow is None and ncol is None:
if aspect_ratio is not None:
nrow = int(np.round(np.sqrt(num_images / aspect_ratio)))
else:
nrow = int(np.sqrt(num_images))
ncol = (num_images + nrow - 1) // nrow
elif nrow is None and ncol is not None:
nrow = (num_images + ncol - 1) // ncol
elif nrow is not None and ncol is None:
ncol = (num_images + nrow - 1) // nrow
else:
assert nrow * ncol >= num_images, 'nrow * ncol must be greater than or equal to the number of images'
grid = np.zeros((nrow * images[0].shape[0], ncol * images[0].shape[1], images[0].shape[2]), dtype=images[0].dtype)
for i, img in enumerate(images):
row = i // ncol
col = i % ncol
grid[row * img.shape[0]:(row + 1) * img.shape[0], col * img.shape[1]:(col + 1) * img.shape[1]] = img
return grid
def notes_on_image(img, notes=None):
img = np.pad(img, ((0, 32), (0, 0), (0, 0)), 'constant', constant_values=0)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
if notes is not None:
img = cv2.putText(img, notes, (0, img.shape[0] - 4), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def save_image_with_notes(img, path, notes=None):
"""
Save an image with notes.
"""
if isinstance(img, torch.Tensor):
img = img.cpu().numpy().transpose(1, 2, 0)
if img.dtype == np.float32 or img.dtype == np.float64:
img = np.clip(img * 255, 0, 255).astype(np.uint8)
img = notes_on_image(img, notes)
cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
# debug utils
def atol(x, y):
"""
Absolute tolerance.
"""
return torch.abs(x - y)
def rtol(x, y):
"""
Relative tolerance.
"""
return torch.abs(x - y) / torch.clamp_min(torch.maximum(torch.abs(x), torch.abs(y)), 1e-12)
# print utils
def indent(s, n=4):
"""
Indent a string.
"""
lines = s.split('\n')
for i in range(1, len(lines)):
lines[i] = ' ' * n + lines[i]
return '\n'.join(lines)
def rotation2quad(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part first, as tensor of shape (..., 4).
Source: https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#matrix_to_quaternion
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
if not isinstance(matrix, torch.Tensor):
matrix = torch.tensor(matrix).cuda()
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
return quat_candidates[
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
].reshape(batch_dim + (4,))
def quad2rotation(q):
"""
Convert quaternion to rotation in batch. Since all operation in pytorch, support gradient passing.
Args:
quad (tensor, batch_size*4): quaternion.
Returns:
rot_mat (tensor, batch_size*3*3): rotation.
"""
# bs = quad.shape[0]
# qr, qi, qj, qk = quad[:, 0], quad[:, 1], quad[:, 2], quad[:, 3]
# two_s = 2.0 / (quad * quad).sum(-1)
# rot_mat = torch.zeros(bs, 3, 3).to(quad.get_device())
# rot_mat[:, 0, 0] = 1 - two_s * (qj**2 + qk**2)
# rot_mat[:, 0, 1] = two_s * (qi * qj - qk * qr)
# rot_mat[:, 0, 2] = two_s * (qi * qk + qj * qr)
# rot_mat[:, 1, 0] = two_s * (qi * qj + qk * qr)
# rot_mat[:, 1, 1] = 1 - two_s * (qi**2 + qk**2)
# rot_mat[:, 1, 2] = two_s * (qj * qk - qi * qr)
# rot_mat[:, 2, 0] = two_s * (qi * qk - qj * qr)
# rot_mat[:, 2, 1] = two_s * (qj * qk + qi * qr)
# rot_mat[:, 2, 2] = 1 - two_s * (qi**2 + qj**2)
# return rot_mat
if not isinstance(q, torch.Tensor):
q = torch.tensor(q).cuda()
norm = torch.sqrt(
q[:, 0] * q[:, 0] + q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] + q[:, 3] * q[:, 3]
)
q = q / norm[:, None]
rot = torch.zeros((q.size(0), 3, 3)).to(q)
r = q[:, 0]
x = q[:, 1]
y = q[:, 2]
z = q[:, 3]
rot[:, 0, 0] = 1 - 2 * (y * y + z * z)
rot[:, 0, 1] = 2 * (x * y - r * z)
rot[:, 0, 2] = 2 * (x * z + r * y)
rot[:, 1, 0] = 2 * (x * y + r * z)
rot[:, 1, 1] = 1 - 2 * (x * x + z * z)
rot[:, 1, 2] = 2 * (y * z - r * x)
rot[:, 2, 0] = 2 * (x * z - r * y)
rot[:, 2, 1] = 2 * (y * z + r * x)
rot[:, 2, 2] = 1 - 2 * (x * x + y * y)
return rot
def perform_rodrigues_transformation(rvec):
try:
R, _ = cv2.Rodrigues(rvec)
return R
except cv2.error as e:
return False
def euler2rot(euler):
r = R.from_euler('xyz', euler, degrees=True)
rotation_matrix = r.as_matrix()
return rotation_matrix
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
"""
ret = torch.zeros_like(x)
positive_mask = x > 0
ret[positive_mask] = torch.sqrt(x[positive_mask])
return ret
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
return quat_candidates[
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
].reshape(batch_dim + (4,))
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
r, i, j, k = torch.unbind(quaternions, -1)
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))