Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from gradio_litmodel3d import LitModel3D | |
| import os | |
| import shutil | |
| os.environ['SPCONV_ALGO'] = 'native' | |
| from typing import * | |
| import torch | |
| import numpy as np | |
| import imageio | |
| from easydict import EasyDict as edict | |
| from PIL import Image | |
| from trellis.pipelines import TrellisVGGTTo3DPipeline | |
| from trellis.representations import Gaussian, MeshExtractResult | |
| from trellis.utils import render_utils, postprocessing_utils | |
| MAX_SEED = np.iinfo(np.int32).max | |
| TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
| os.makedirs(TMP_DIR, exist_ok=True) | |
| def start_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| def end_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| shutil.rmtree(user_dir) | |
| def preprocess_image(image: Image.Image) -> Image.Image: | |
| """ | |
| Preprocess the input image for 3D generation. | |
| This function is called when a user uploads an image or selects an example. | |
| It applies background removal and other preprocessing steps necessary for | |
| optimal 3D model generation. | |
| Args: | |
| image (Image.Image): The input image from the user | |
| Returns: | |
| Image.Image: The preprocessed image ready for 3D generation | |
| """ | |
| processed_image = pipeline.preprocess_image(image) | |
| return processed_image | |
| def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]: | |
| """ | |
| Preprocess a list of input images for multi-image 3D generation. | |
| This function is called when users upload multiple images in the gallery. | |
| It processes each image to prepare them for the multi-image 3D generation pipeline. | |
| Args: | |
| images (List[Tuple[Image.Image, str]]): The input images from the gallery | |
| Returns: | |
| List[Image.Image]: The preprocessed images ready for 3D generation | |
| """ | |
| images = [image[0] for image in images] | |
| processed_images = [pipeline.preprocess_image(image) for image in images] | |
| return processed_images | |
| def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
| return { | |
| 'gaussian': { | |
| **gs.init_params, | |
| '_xyz': gs._xyz.cpu().numpy(), | |
| '_features_dc': gs._features_dc.cpu().numpy(), | |
| '_scaling': gs._scaling.cpu().numpy(), | |
| '_rotation': gs._rotation.cpu().numpy(), | |
| '_opacity': gs._opacity.cpu().numpy(), | |
| }, | |
| 'mesh': { | |
| 'vertices': mesh.vertices.cpu().numpy(), | |
| 'faces': mesh.faces.cpu().numpy(), | |
| }, | |
| } | |
| def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
| gs = Gaussian( | |
| aabb=state['gaussian']['aabb'], | |
| sh_degree=state['gaussian']['sh_degree'], | |
| mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
| scaling_bias=state['gaussian']['scaling_bias'], | |
| opacity_bias=state['gaussian']['opacity_bias'], | |
| scaling_activation=state['gaussian']['scaling_activation'], | |
| ) | |
| gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
| gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
| gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
| gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
| gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
| mesh = edict( | |
| vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
| faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
| ) | |
| return gs, mesh | |
| def get_seed(randomize_seed: bool, seed: int) -> int: | |
| """ | |
| Get the random seed for generation. | |
| This function is called by the generate button to determine whether to use | |
| a random seed or the user-specified seed value. | |
| Args: | |
| randomize_seed (bool): Whether to generate a random seed | |
| seed (int): The user-specified seed value | |
| Returns: | |
| int: The seed to use for generation | |
| """ | |
| return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
| def generate_and_extract_glb( | |
| multiimages: List[Tuple[Image.Image, str]], | |
| seed: int, | |
| ss_guidance_strength: float, | |
| ss_sampling_steps: int, | |
| slat_guidance_strength: float, | |
| slat_sampling_steps: int, | |
| multiimage_algo: Literal["multidiffusion", "stochastic"], | |
| mesh_simplify: float, | |
| texture_size: int, | |
| req: gr.Request, | |
| ) -> Tuple[dict, str, str, str]: | |
| """ | |
| Convert an image to a 3D model and extract GLB file. | |
| Args: | |
| image (Image.Image): The input image. | |
| multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode. | |
| is_multiimage (bool): Whether is in multi-image mode. | |
| seed (int): The random seed. | |
| ss_guidance_strength (float): The guidance strength for sparse structure generation. | |
| ss_sampling_steps (int): The number of sampling steps for sparse structure generation. | |
| slat_guidance_strength (float): The guidance strength for structured latent generation. | |
| slat_sampling_steps (int): The number of sampling steps for structured latent generation. | |
| multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation. | |
| mesh_simplify (float): The mesh simplification factor. | |
| texture_size (int): The texture resolution. | |
| Returns: | |
| dict: The information of the generated 3D model. | |
| str: The path to the video of the 3D model. | |
| str: The path to the extracted GLB file. | |
| str: The path to the extracted GLB file (for download). | |
| """ | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| image_files = [image[0] for image in multiimages] | |
| # Generate 3D model | |
| outputs = pipeline.run( | |
| image=image_files, | |
| seed=seed, | |
| formats=["gaussian", "mesh"], | |
| preprocess_image=False, | |
| sparse_structure_sampler_params={ | |
| "steps": ss_sampling_steps, | |
| "cfg_strength": ss_guidance_strength, | |
| }, | |
| slat_sampler_params={ | |
| "steps": slat_sampling_steps, | |
| "cfg_strength": slat_guidance_strength, | |
| }, | |
| mode=multiimage_algo, | |
| ) | |
| # Render video | |
| video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
| video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
| video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
| video_path = os.path.join(user_dir, 'sample.mp4') | |
| imageio.mimsave(video_path, video, fps=15) | |
| # Extract GLB | |
| gs = outputs['gaussian'][0] | |
| mesh = outputs['mesh'][0] | |
| glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
| glb_path = os.path.join(user_dir, 'sample.glb') | |
| glb.export(glb_path) | |
| # Pack state for optional Gaussian extraction | |
| state = pack_state(gs, mesh) | |
| torch.cuda.empty_cache() | |
| return state, video_path, glb_path, glb_path | |
| def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: | |
| """ | |
| Extract a Gaussian splatting file from the generated 3D model. | |
| This function is called when the user clicks "Extract Gaussian" button. | |
| It converts the 3D model state into a .ply file format containing | |
| Gaussian splatting data for advanced 3D applications. | |
| Args: | |
| state (dict): The state of the generated 3D model containing Gaussian data | |
| req (gr.Request): Gradio request object for session management | |
| Returns: | |
| Tuple[str, str]: Paths to the extracted Gaussian file (for display and download) | |
| """ | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| gs, _ = unpack_state(state) | |
| gaussian_path = os.path.join(user_dir, 'sample.ply') | |
| gs.save_ply(gaussian_path) | |
| torch.cuda.empty_cache() | |
| return gaussian_path, gaussian_path | |
| def prepare_multi_example() -> List[Image.Image]: | |
| multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")])) | |
| images = [] | |
| for case in multi_case: | |
| _images = [] | |
| for i in range(1, 9): | |
| if os.path.exists(f'assets/example_multi_image/{case}_{i}.png'): | |
| img = Image.open(f'assets/example_multi_image/{case}_{i}.png') | |
| W, H = img.size | |
| img = img.resize((int(W / H * 512), 512)) | |
| _images.append(np.array(img)) | |
| if len(_images) > 0: | |
| images.append(Image.fromarray(np.concatenate(_images, axis=1))) | |
| return images | |
| def split_image(image: Image.Image) -> List[Image.Image]: | |
| """ | |
| Split a multi-view image into separate view images. | |
| This function is called when users select multi-image examples that contain | |
| multiple views in a single concatenated image. It automatically splits them | |
| based on alpha channel boundaries and preprocesses each view. | |
| Args: | |
| image (Image.Image): A concatenated image containing multiple views | |
| Returns: | |
| List[Image.Image]: List of individual preprocessed view images | |
| """ | |
| image = np.array(image) | |
| alpha = image[..., 3] | |
| alpha = np.any(alpha>0, axis=0) | |
| start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist() | |
| end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist() | |
| images = [] | |
| for s, e in zip(start_pos, end_pos): | |
| images.append(Image.fromarray(image[:, s:e+1])) | |
| return [preprocess_image(image) for image in images] | |
| with gr.Blocks(delete_cache=(600, 600)) as demo: | |
| gr.Markdown(""" | |
| ## Multi-view images to 3D Asset with [ReconViaGen](https://jiahao620.github.io/reconviagen/) | |
| * Upload an image and click "Generate & Extract GLB" to create a 3D asset and automatically extract the GLB file. | |
| * If you want the Gaussian file as well, click "Extract Gaussian" after generation. | |
| * If the image has alpha channel, it will be used as the mask. Otherwise, we use `rembg` to remove the background. | |
| ✨This demo is partial. We will release the whole model later. Stay tuned!✨ | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Tabs() as input_tabs: | |
| with gr.Tab(label="Multiple Images", id=0) as multiimage_input_tab: | |
| image_prompt = gr.Image(label="Image Prompt", format="png", visible=False, image_mode="RGBA", type="pil", height=300) | |
| multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3) | |
| gr.Markdown(""" | |
| Input different views of the object in separate images. | |
| """) | |
| with gr.Accordion(label="Generation Settings", open=False): | |
| seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=False) | |
| gr.Markdown("Stage 1: Sparse Structure Generation") | |
| with gr.Row(): | |
| ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=30, step=1) | |
| gr.Markdown("Stage 2: Structured Latent Generation") | |
| with gr.Row(): | |
| slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
| slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="multidiffusion") | |
| with gr.Accordion(label="GLB Extraction Settings", open=False): | |
| mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
| texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
| generate_btn = gr.Button("Generate & Extract GLB", variant="primary") | |
| extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) | |
| gr.Markdown(""" | |
| *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* | |
| """) | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
| model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300) | |
| with gr.Row(): | |
| download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
| download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) | |
| output_buf = gr.State() | |
| # Example images at the bottom of the page | |
| with gr.Row() as multiimage_example: | |
| examples_multi = gr.Examples( | |
| examples=prepare_multi_example(), | |
| inputs=[image_prompt], | |
| fn=split_image, | |
| outputs=[multiimage_prompt], | |
| run_on_click=True, | |
| examples_per_page=8, | |
| ) | |
| # Handlers | |
| demo.load(start_session) | |
| demo.unload(end_session) | |
| multiimage_prompt.upload( | |
| preprocess_images, | |
| inputs=[multiimage_prompt], | |
| outputs=[multiimage_prompt], | |
| ) | |
| generate_btn.click( | |
| get_seed, | |
| inputs=[randomize_seed, seed], | |
| outputs=[seed], | |
| ).then( | |
| # lambda: [None, None, None, None], # 先清空 video_output | |
| # inputs=[], | |
| # outputs=[video_output, model_output, download_glb, download_gs], | |
| # ).then( | |
| generate_and_extract_glb, | |
| inputs=[multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size], | |
| outputs=[output_buf, video_output, model_output, download_glb], | |
| ).then( | |
| lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), | |
| outputs=[extract_gs_btn, download_glb], | |
| ) | |
| video_output.clear( | |
| lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False), gr.Button(interactive=False)]), | |
| outputs=[extract_gs_btn, download_glb, download_gs], | |
| ) | |
| extract_gs_btn.click( | |
| extract_gaussian, | |
| inputs=[output_buf], | |
| outputs=[model_output, download_gs], | |
| ).then( | |
| lambda: gr.Button(interactive=True), | |
| outputs=[download_gs], | |
| ) | |
| model_output.clear( | |
| lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), | |
| outputs=[download_glb, download_gs], | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| pipeline = TrellisVGGTTo3DPipeline.from_pretrained("Stable-X/trellis-vggt-v0-1") | |
| pipeline.cuda() | |
| pipeline.VGGT_model.cuda() | |
| pipeline.birefnet_model.cuda() | |
| try: | |
| pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg | |
| except: | |
| pass | |
| demo.launch(share=True) |