Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from easydict import EasyDict as edict | |
| from typing import Tuple, Optional | |
| from diso import DiffDMC | |
| from .cube2mesh import MeshExtractResult | |
| from .utils_cube import * | |
| from ...modules.sparse import SparseTensor | |
| class EnhancedMarchingCubes: | |
| def __init__(self, device="cuda"): | |
| self.device = device | |
| self.diffdmc = DiffDMC(dtype=torch.float32) | |
| def __call__(self, | |
| voxelgrid_vertices: torch.Tensor, | |
| scalar_field: torch.Tensor, | |
| voxelgrid_colors: Optional[torch.Tensor] = None, | |
| training: bool = False | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: | |
| """ | |
| Enhanced Marching Cubes implementation using DiffDMC that handles deformations and colors | |
| """ | |
| if scalar_field.dim() == 1: | |
| grid_size = int(round(scalar_field.shape[0] ** (1 / 3))) | |
| scalar_field = scalar_field.reshape(grid_size, grid_size, grid_size) | |
| elif scalar_field.dim() > 3: | |
| scalar_field = scalar_field.squeeze() | |
| if scalar_field.dim() != 3: | |
| raise ValueError(f"Expected 3D array, got shape {scalar_field.shape}") | |
| # Normalize coordinates for DiffDMC | |
| scalar_field = scalar_field.to(self.device) | |
| # Get deformation field if provided | |
| deform_field = None | |
| if voxelgrid_vertices is not None: | |
| if voxelgrid_vertices.dim() == 2: | |
| grid_size = int(round(voxelgrid_vertices.shape[0] ** (1 / 3))) | |
| voxelgrid_vertices = voxelgrid_vertices.reshape(grid_size, grid_size, grid_size, 3) | |
| deform_field = voxelgrid_vertices.to(self.device) | |
| # Run DiffDMC | |
| vertices, faces = self.diffdmc( | |
| scalar_field, | |
| deform_field, | |
| isovalue=0.0 | |
| ) | |
| # Handle colors if provided | |
| colors = None | |
| if voxelgrid_colors is not None: | |
| voxelgrid_colors = torch.sigmoid(voxelgrid_colors) | |
| if voxelgrid_colors.dim() == 2: | |
| grid_size = int(round(voxelgrid_colors.shape[0] ** (1/3))) | |
| voxelgrid_colors = voxelgrid_colors.reshape(grid_size, grid_size, grid_size, -1) | |
| grid_positions = vertices.clone() * grid_size | |
| grid_coords = grid_positions.long() | |
| local_coords = grid_positions - grid_coords.float() | |
| # Clamp coordinates to grid bounds | |
| grid_coords = torch.clamp(grid_coords, 0, voxelgrid_colors.shape[0] - 1) | |
| # Trilinear interpolation for colors | |
| colors = self._interpolate_color(grid_coords, local_coords, voxelgrid_colors) | |
| vertices = vertices * 2 - 1 # Normalize vertices to [-1, 1] | |
| vertices /= 2.0 # Normalize vertices to [-0.5, 0.5] | |
| # Compute deviation loss for training | |
| deviation_loss = torch.tensor(0.0, device=self.device) | |
| if training and deform_field is not None: | |
| # Compute deviation between original and deformed vertices | |
| deviation_loss = self._compute_deviation_loss(vertices, deform_field) | |
| # faces = faces.flip(dims=[1]) # Maintain consistent face orientation | |
| return vertices, faces, deviation_loss, colors | |
| def _interpolate_color(self, grid_coords: torch.Tensor, | |
| local_coords: torch.Tensor, | |
| color_field: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Interpolate colors using trilinear interpolation | |
| Args: | |
| grid_coords: (N, 3) integer grid coordinates | |
| local_coords: (N, 3) fractional positions within grid cells | |
| color_field: (res, res, res, C) color values | |
| """ | |
| x, y, z = local_coords[:, 0], local_coords[:, 1], local_coords[:, 2] | |
| # Get corner values for each vertex | |
| c000 = color_field[grid_coords[:, 0], grid_coords[:, 1], grid_coords[:, 2]] | |
| c001 = color_field[grid_coords[:, 0], grid_coords[:, 1], | |
| torch.clamp(grid_coords[:, 2] + 1, 0, color_field.shape[2] - 1)] | |
| c010 = color_field[grid_coords[:, 0], | |
| torch.clamp(grid_coords[:, 1] + 1, 0, color_field.shape[1] - 1), | |
| grid_coords[:, 2]] | |
| c011 = color_field[grid_coords[:, 0], | |
| torch.clamp(grid_coords[:, 1] + 1, 0, color_field.shape[1] - 1), | |
| torch.clamp(grid_coords[:, 2] + 1, 0, color_field.shape[2] - 1)] | |
| c100 = color_field[torch.clamp(grid_coords[:, 0] + 1, 0, color_field.shape[0] - 1), | |
| grid_coords[:, 1], grid_coords[:, 2]] | |
| c101 = color_field[torch.clamp(grid_coords[:, 0] + 1, 0, color_field.shape[0] - 1), | |
| grid_coords[:, 1], | |
| torch.clamp(grid_coords[:, 2] + 1, 0, color_field.shape[2] - 1)] | |
| c110 = color_field[torch.clamp(grid_coords[:, 0] + 1, 0, color_field.shape[0] - 1), | |
| torch.clamp(grid_coords[:, 1] + 1, 0, color_field.shape[1] - 1), | |
| grid_coords[:, 2]] | |
| c111 = color_field[torch.clamp(grid_coords[:, 0] + 1, 0, color_field.shape[0] - 1), | |
| torch.clamp(grid_coords[:, 1] + 1, 0, color_field.shape[1] - 1), | |
| torch.clamp(grid_coords[:, 2] + 1, 0, color_field.shape[2] - 1)] | |
| # Interpolate along x axis | |
| c00 = c000 * (1 - x)[:, None] + c100 * x[:, None] | |
| c01 = c001 * (1 - x)[:, None] + c101 * x[:, None] | |
| c10 = c010 * (1 - x)[:, None] + c110 * x[:, None] | |
| c11 = c011 * (1 - x)[:, None] + c111 * x[:, None] | |
| # Interpolate along y axis | |
| c0 = c00 * (1 - y)[:, None] + c10 * y[:, None] | |
| c1 = c01 * (1 - y)[:, None] + c11 * y[:, None] | |
| # Interpolate along z axis | |
| colors = c0 * (1 - z)[:, None] + c1 * z[:, None] | |
| return colors | |
| def _compute_deviation_loss(self, vertices: torch.Tensor, | |
| deform_field: torch.Tensor) -> torch.Tensor: | |
| """Compute deviation loss for training""" | |
| # Since DiffDMC already handles the deformation, we compute the loss | |
| # based on the magnitude of the deformation field | |
| return torch.mean(deform_field ** 2) | |
| class SparseFeatures2MCMesh: | |
| def __init__(self, device="cuda", res=128, use_color=True): | |
| super().__init__() | |
| self.device = device | |
| self.res = res | |
| self.mesh_extractor = EnhancedMarchingCubes(device=device) | |
| self.sdf_bias = -1.0 / res | |
| verts, cube = construct_dense_grid(self.res, self.device) | |
| self.reg_c = cube.to(self.device) | |
| self.reg_v = verts.to(self.device) | |
| self.use_color = use_color | |
| self._calc_layout() | |
| def _calc_layout(self): | |
| LAYOUTS = { | |
| 'sdf': {'shape': (8, 1), 'size': 8}, | |
| 'deform': {'shape': (8, 3), 'size': 8 * 3}, | |
| 'weights': {'shape': (21,), 'size': 21} | |
| } | |
| if self.use_color: | |
| ''' | |
| 6 channel color including normal map | |
| ''' | |
| LAYOUTS['color'] = {'shape': (8, 6,), 'size': 8 * 6} | |
| self.layouts = edict(LAYOUTS) | |
| start = 0 | |
| for k, v in self.layouts.items(): | |
| v['range'] = (start, start + v['size']) | |
| start += v['size'] | |
| self.feats_channels = start | |
| def get_layout(self, feats: torch.Tensor, name: str): | |
| if name not in self.layouts: | |
| return None | |
| return feats[:, self.layouts[name]['range'][0]:self.layouts[name]['range'][1]].reshape(-1, *self.layouts[name][ | |
| 'shape']) | |
| def __call__(self, cubefeats: SparseTensor, training=False): | |
| coords = cubefeats.coords[:, 1:] | |
| feats = cubefeats.feats | |
| sdf, deform, color, weights = [self.get_layout(feats, name) | |
| for name in ['sdf', 'deform', 'color', 'weights']] | |
| sdf += self.sdf_bias | |
| v_attrs = [sdf, deform, color] if self.use_color else [sdf, deform] | |
| v_pos, v_attrs, reg_loss = sparse_cube2verts(coords, torch.cat(v_attrs, dim=-1), | |
| training=training) | |
| v_attrs_d = get_dense_attrs(v_pos, v_attrs, res=self.res + 1, sdf_init=True) | |
| if self.use_color: | |
| sdf_d, deform_d, colors_d = (v_attrs_d[..., 0], v_attrs_d[..., 1:4], | |
| v_attrs_d[..., 4:]) | |
| else: | |
| sdf_d, deform_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4] | |
| colors_d = None | |
| x_nx3 = get_defomed_verts(self.reg_v, deform_d, self.res) | |
| vertices, faces, L_dev, colors = self.mesh_extractor( | |
| voxelgrid_vertices=x_nx3, | |
| scalar_field=sdf_d, | |
| voxelgrid_colors=colors_d, | |
| training=training | |
| ) | |
| mesh = MeshExtractResult(vertices=vertices, faces=faces, | |
| vertex_attrs=colors, res=self.res) | |
| if training: | |
| if mesh.success: | |
| reg_loss += L_dev.mean() * 0.5 | |
| reg_loss += (weights[:, :20]).abs().mean() * 0.2 | |
| mesh.reg_loss = reg_loss | |
| mesh.tsdf_v = get_defomed_verts(v_pos, v_attrs[:, 1:4], self.res) | |
| mesh.tsdf_s = v_attrs[:, 0] | |
| return mesh |