File size: 31,557 Bytes
f3ff4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
from typing import *
import torch
import numpy as np
from tqdm import tqdm
from easydict import EasyDict as edict
from .base import Sampler
from .classifier_free_guidance_mixin import ClassifierFreeGuidanceSamplerMixin
from .guidance_interval_mixin import GuidanceIntervalSamplerMixin
import math
from trellis.modules.spatial import patchify, unpatchify
from trellis.utils import render_utils, postprocessing_utils
from trellis.utils import loss_utils
import trellis.modules.sparse as sp
import torch.nn.functional as F


class FlowEulerSampler(Sampler):
    """
    Generate samples from a flow-matching model using Euler sampling.

    Args:
        sigma_min: The minimum scale of noise in flow.
    """
    def __init__(
        self,
        sigma_min: float,
    ):
        self.sigma_min = sigma_min

    def _eps_to_xstart(self, x_t, t, eps):
        assert x_t.shape == eps.shape
        return (x_t - (self.sigma_min + (1 - self.sigma_min) * t) * eps) / (1 - t)
  
    def _xstart_to_x_t(self, x_0, t, eps):
        assert x_0.shape == eps.shape
        return (1-t) * x_0 + (self.sigma_min + (1 - self.sigma_min) * t) * eps
        # return (1-t) * x_0  + t * eps + self.sigma_min * (1-t)  * eps 

    def _xstart_to_eps(self, x_t, t, x_0):
        assert x_t.shape == x_0.shape
        return (x_t - (1 - t) * x_0) / (self.sigma_min + (1 - self.sigma_min) * t)

    def _v_to_xstart_eps(self, x_t, t, v):
        assert x_t.shape == v.shape
        eps = (1 - t) * v + x_t
        x_0 = (1 - self.sigma_min) * x_t - (self.sigma_min + (1 - self.sigma_min) * t) * v
        return x_0, eps
        
    def _xstart_to_v(self, x_0, x_t, t):
        assert x_0.shape == x_t.shape
        return (x_t - (1 - self.sigma_min) * x_0) / (self.sigma_min + (1 - self.sigma_min) * t)


    def _inference_model(self, model, x_t, t, cond=None, **kwargs):
        t = torch.tensor([1000 * t] * x_t.shape[0], device=x_t.device, dtype=torch.float32)
        return model(x_t, t, cond, **kwargs)

    def _get_model_prediction(self, model, x_t, t, cond=None, **kwargs):
        param = kwargs.pop("parameterization", "v")
        if param == "v":
            pred_v = self._inference_model(model, x_t, t, cond, **kwargs)
            pred_x_0, pred_eps = self._v_to_xstart_eps(x_t=x_t, t=t, v=pred_v)
        elif param == "x0":
            pred_x_0 = self._inference_model(model, x_t, t, cond, **kwargs)
            pred_v = self._xstart_to_v(x_0=pred_x_0, x_t=x_t, t=t)
        return pred_x_0, None, pred_v

    def _get_model_gt(self, x_0, t, noise):
        gt_x_t = self._xstart_to_x_t(x_0, t, noise)
        gt_v = self._xstart_to_v(x_0, gt_x_t, t)
        return gt_x_t, gt_v

    @torch.no_grad()
    def sample_once(
        self,
        model,
        x_t,
        t: float,
        t_prev: float,
        cond: Optional[Any] = None,
        **kwargs
    ):
        """
        Sample x_{t-1} from the model using Euler method.
        
        Args:
            model: The model to sample from.
            x_t: The [N x C x ...] tensor of noisy inputs at time t.
            t: The current timestep.
            t_prev: The previous timestep.
            cond: conditional information.
            **kwargs: Additional arguments for model inference.

        Returns:
            a dict containing the following
            - 'pred_x_prev': x_{t-1}.
            - 'pred_x_0': a prediction of x_0.
        """
        pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
        pred_x_prev = x_t - (t - t_prev) * pred_v
        return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0, "pred_eps": pred_eps})

    def sample_once_opt(
        self,
        model,
        x_t,
        t: float,
        t_prev: float,
        cond: Optional[Any] = None,
        **kwargs
    ):
        """
        Sample x_{t-1} from the model using Euler method.
        
        Args:
            model: The model to sample from.
            x_t: The [N x C x ...] tensor of noisy inputs at time t.
            t: The current timestep.
            t_prev: The previous timestep.
            cond: conditional information.
            **kwargs: Additional arguments for model inference.

        Returns:
            a dict containing the following
            - 'pred_x_prev': x_{t-1}.
            - 'pred_x_0': a prediction of x_0.
        """
        pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
        pred_x_prev = x_t - (t - t_prev) * pred_v
        return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0, "pred_eps": pred_eps})

    def sample_once_opt_delta_v(
        self,
        model,
        slat_decoder_gs,
        slat_decoder_mesh,
        dreamsim_model,
        learning_rate,
        input_images,
        extrinsics, 
        intrinsics,
        x_t,
        t: float,
        t_prev: float,
        cond: Optional[Any] = None,
        **kwargs
    ):
        """
        Sample x_{t-1} from the model using Euler method.
        
        Args:
            model: The model to sample from.
            x_t: The [N x C x ...] tensor of noisy inputs at time t.
            t: The current timestep.
            t_prev: The previous timestep.
            cond: conditional information.
            **kwargs: Additional arguments for model inference.

        Returns:
            a dict containing the following
            - 'pred_x_prev': x_{t-1}.
            - 'pred_x_0': a prediction of x_0.
        """
        torch.cuda.empty_cache()
        with torch.no_grad():
            pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
        pred_v_opt_feat = torch.nn.Parameter(pred_v.feats.detach().clone())
        optimizer = torch.optim.Adam([pred_v_opt_feat], betas=(0.5, 0.9), lr=learning_rate)
        pred_v_opt = sp.SparseTensor(feats=pred_v_opt_feat, coords=pred_v.coords)
        total_steps = 5
        input_images = F.interpolate(input_images, size=(259, 259), mode='bilinear', align_corners=False)
        with tqdm(total=total_steps, disable=True, desc='Appearance (opt): optimizing') as pbar:
            for step in range(total_steps):
                optimizer.zero_grad()
                pred_x_0, _ = self._v_to_xstart_eps(x_t=x_t, t=t, v=pred_v_opt)
                pred_gs = slat_decoder_gs(pred_x_0)
                # pred_mesh = slat_decoder_mesh(pred_x_0)
                rend_gs = render_utils.render_frames(pred_gs[0], extrinsics, intrinsics, {'resolution': 259, 'bg_color': (0, 0, 0)}, need_depth=True, opt=True)['color']
                # rend_mesh = render_utils.render_frames_opt(pred_mesh[0], extrinsics, intrinsics, {'resolution': 518, 'bg_color': (0, 0, 0)}, need_depth=True)['color']
                rend_gs = torch.stack(rend_gs, dim=0)
                loss_gs = loss_utils.l1_loss(rend_gs, input_images) + (1 - loss_utils.ssim(rend_gs, input_images)) + loss_utils.lpips(rend_gs, input_images) + dreamsim_model(rend_gs, input_images).mean()
                # loss_gs = (1 - loss_utils.ssim(rend_gs, input_images)) + loss_utils.lpips(rend_gs, input_images) + dreamsim_model(rend_gs, input_images).mean()
                # loss_mesh = loss_utils.l1_loss(rend_mesh, input_images) + 0.2 * (1 - loss_utils.ssim(rend_mesh, input_images)) + 0.2 * loss_utils.lpips(rend_mesh, input_images)
                loss = loss_gs + 0.2 * loss_utils.l1_loss(pred_v_opt_feat, pred_v.feats)
                loss.backward()
                optimizer.step()
                pbar.set_postfix({'loss': loss.item()})
                pbar.update()
        
        pred_x_prev = x_t - (t - t_prev) * pred_v_opt.detach()
        torch.cuda.empty_cache()
        return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0, "pred_eps": pred_eps})

    def sample_opt(
        self,
        model,
        noise,
        cond: Optional[Any] = None,
        steps: int = 50,
        rescale_t: float = 1.0,
        verbose: bool = True,
        **kwargs
    ):
        """
        Generate samples from the model using Euler method.
        
        Args:
            model: The model to sample from.
            noise: The initial noise tensor.
            cond: conditional information.
            steps: The number of steps to sample.
            rescale_t: The rescale factor for t.
            verbose: If True, show a progress bar.
            **kwargs: Additional arguments for model_inference.

        Returns:
            a dict containing the following
            - 'samples': the model samples.
            - 'pred_x_t': a list of prediction of x_t.
            - 'pred_x_0': a list of prediction of x_0.
        """
        sample = noise
        t_seq = np.linspace(1, 0, steps + 1)
        t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
        t_pairs = list((t_seq[i], t_seq[i + 1]) for i in range(steps))
        ret = edict({"samples": None, "pred_x_t": [], "pred_x_0": []})
        for t, t_prev in tqdm(t_pairs, desc="Sampling", disable=not verbose):
            out = self.sample_once_opt(model, sample, t, t_prev, cond, **kwargs)
            sample = out.pred_x_prev
            ret.pred_x_t.append(out.pred_x_prev)
            ret.pred_x_0.append(out.pred_x_0)
        ret.samples = sample
        return ret

    def sample_opt_delta_v(
        self,
        model,
        slat_decoder_gs,
        slat_decoder_mesh,
        dreamsim_model,
        apperance_learning_rate,
        start_t,
        input_images,
        extrinsics, 
        intrinsics,
        noise,
        cond: Optional[Any] = None,
        steps: int = 50,
        rescale_t: float = 1.0,
        verbose: bool = True,
        **kwargs
    ):
        """
        Generate samples from the model using Euler method.
        
        Args:
            model: The model to sample from.
            noise: The initial noise tensor.
            cond: conditional information.
            steps: The number of steps to sample.
            rescale_t: The rescale factor for t.
            verbose: If True, show a progress bar.
            **kwargs: Additional arguments for model_inference.

        Returns:
            a dict containing the following
            - 'samples': the model samples.
            - 'pred_x_t': a list of prediction of x_t.
            - 'pred_x_0': a list of prediction of x_0.
        """
        sample = noise
        t_seq = np.linspace(1, 0, steps + 1)
        t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
        t_pairs = list((t_seq[i], t_seq[i + 1]) for i in range(steps))
        ret = edict({"samples": None, "pred_x_t": [], "pred_x_0": []})
        # def cosine_anealing(step, total_steps, start_lr, end_lr):
        #     return end_lr + 0.5 * (start_lr - end_lr) * (1 + np.cos(np.pi * step / total_steps))
        for i, (t, t_prev) in enumerate(tqdm(t_pairs, desc="Sampling", disable=not verbose)):
            if t > start_t:
                out = self.sample_once(model, sample, t, t_prev, cond, **kwargs)
                sample = out.pred_x_prev
                ret.pred_x_t.append(out.pred_x_prev)
                ret.pred_x_0.append(out.pred_x_0)
            else:
                # learning_rate = cosine_anealing(i - int(np.where(t_seq <= start_t)[0].min()), int(steps - np.where(t_seq <= start_t)[0].min()), apperance_learning_rate, 1e-5)
                learning_rate = apperance_learning_rate
                out = self.sample_once_opt_delta_v(model, slat_decoder_gs, slat_decoder_mesh, dreamsim_model, learning_rate, input_images, extrinsics, intrinsics, sample, t, t_prev, cond, **kwargs)
                sample = out.pred_x_prev
                ret.pred_x_t.append(out.pred_x_prev)
                ret.pred_x_0.append(out.pred_x_0)
        ret.samples = sample
        return ret

    @torch.no_grad()
    def sample(
        self,
        model,
        noise,
        cond: Optional[Any] = None,
        steps: int = 50,
        rescale_t: float = 1.0,
        verbose: bool = True,
        **kwargs
    ):
        """
        Generate samples from the model using Euler method.
        
        Args:
            model: The model to sample from.
            noise: The initial noise tensor.
            cond: conditional information.
            steps: The number of steps to sample.
            rescale_t: The rescale factor for t.
            verbose: If True, show a progress bar.
            **kwargs: Additional arguments for model_inference.

        Returns:
            a dict containing the following
            - 'samples': the model samples.
            - 'pred_x_t': a list of prediction of x_t.
            - 'pred_x_0': a list of prediction of x_0.
        """
        sample = noise
        t_seq = np.linspace(1, 0, steps + 1)
        t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
        t_pairs = list((t_seq[i], t_seq[i + 1]) for i in range(steps))
        ret = edict({"samples": None, "pred_x_t": [], "pred_x_0": []})
        for t, t_prev in tqdm(t_pairs, desc="Sampling", disable=not verbose):
            out = self.sample_once(model, sample, t, t_prev, cond, **kwargs)
            sample = out.pred_x_prev
            ret.pred_x_t.append(out.pred_x_prev)
            ret.pred_x_0.append(out.pred_x_0)
        ret.samples = sample
        return ret



class LatentMatchSampler(FlowEulerSampler):
    """
    Generate samples from a Bridge Matching model using Euler sampling.
    This sampler is designed for Latent Bridge Matching (LBM), where
    the target (x_1) for training is assumed to be sampled from a Gaussian distribution,
    and the source (x_0) for inference is also typically a Gaussian noise.

    Args:
        sigma_bridge: The sigma parameter for the Bridge Matching stochastic interpolant.
                      This controls the amount of stochasticity in the SDE (LBM paper Eq 1).

    """
    def __init__(
        self,
        sigma_bridge: float = 0.1,
        **kwargs
    ):
        # Call parent constructor with a dummy sigma_min.
        # sigma_min is specific to Flow Matching's interpolant, which we override.
        super().__init__(sigma_min=0.0, **kwargs)
        self.sigma_bridge = sigma_bridge

    # Override _xstart_to_x_t for Bridge Matching's stochastic interpolant
    # This method is used to generate gt_x_t for training.
    def _xstart_to_x_t(self, x_0: torch.Tensor, t: float, noise: torch.Tensor,  x_1: torch.Tensor) -> torch.Tensor:
        """
        Calculates x_t according to the Bridge Matching stochastic interpolant.
        This function is used during training to generate noisy samples x_t from
        paired x_0 and x_1 samples. The 'x_1' argument is crucial for Bridge Matching.

        Args:
            x_0: The source latent tensor (e.g., from a data distribution or Gaussian).
            t: The current timestep (float between 0 and 1).
            eps: A random noise tensor (epsilon).
            x_1: The target latent tensor. Required for Bridge Matching.

        Returns:
            The interpolated latent tensor x_t.
        """        
        # LBM interpolant formula: x_t = (1-t)x_0 + t*x_1 + sigma_bridge*sqrt(t*(1-t))*epsilon
        return (1 - t) * x_0 + t * x_1 + self.sigma_bridge * math.sqrt(t * (1 - t)) * noise

    # This method is used to calculate gt_v for training.
    def _xstart_to_v(self, x_0: torch.Tensor, x_t: torch.Tensor, t: float, x_1: Optional[torch.Tensor] = None) -> torch.Tensor:
        """
        Calculates the ground truth drift (v) that the model should predict for Bridge Matching.
        This function is used in the training objective to define the target for the model.

        Args:
            x_0: The source latent tensor.
            x_t: The interpolated latent tensor at time t.
            t: The current timestep (float between 0 and 1).
            x_1: The target latent tensor. Required for Bridge Matching.

        Returns:
            The target drift tensor v.
        """
        if x_1 is None:
            # This branch should ideally not be hit during _get_model_gt for LBM.
            raise ValueError("For Bridge Matching's target drift calculation, x_1 (target latent) must be provided.")
        assert x_t.shape == x_1.shape, "x_t and x_1 shapes must match."
        # LBM drift formula: v = (x_1 - x_t) / (1 - t)
        # Add a small epsilon to (1-t) to prevent division by zero if t is exactly 1.
        epsilon_t = 1e-5 # Small epsilon for numerical stability
        return (x_t - x_0) / (t + epsilon_t)

    # Override _get_model_gt to provide ground truth for Bridge Matching training.
    # In this simplified case, x_1 is sampled from a Gaussian distribution.
    def _get_model_gt(self, x_0: torch.Tensor, t: float, x_1: torch.Tensor):
        """
        Calculates ground truth x_t and v_target for Bridge Matching training purposes.
        In this simplified case, x_1 is sampled from a Gaussian distribution.
        
        Args:
            x_0: The source latent tensor (e.g., from a data distribution, or another Gaussian).
            t: The current timestep.
            noise: A random noise tensor (epsilon).

        Returns:
            A tuple (gt_x_t, gt_v).
        """
        # Sample x_1 from a Gaussian distribution with the same shape as x_0
        # This simulates the target distribution being Gaussian.
        if isinstance(x_0, sp.SparseTensor):
            noise = sp.SparseTensor(
                feats=torch.randn_like(x_0.feats).to(x_0.feats.device),
                coords=x_0.coords,
            )
        else:
            noise = torch.randn_like(x_0).to(x_0.device)
        # For Bridge Matching, _xstart_to_x_t needs x_1
        gt_x_t = self._xstart_to_x_t(x_0, t, noise, x_1=x_1) 
        gt_v = self._xstart_to_v(x_0, gt_x_t, t, x_1=x_1) 
        return gt_x_t, gt_v

    # Override sample_once to include the stochastic term for SDE integration.
    @torch.no_grad()
    def sample_once(
        self,
        model,
        x_t: torch.Tensor,
        t: float,
        t_prev: float,
        cond: Optional[Any] = None,
        **kwargs
    ) -> edict:
        """
        Performs a single Euler step to sample x_{t_next} from x_t for Bridge Matching.
        The model is assumed to predict the drift 'v' as per LBM's formulation.
        
        Args:
            model: The model to sample from (should be trained for Bridge Matching).
            x_t: The [N x C x ...] tensor of current latent inputs at time t.
            t: The current timestep.
            t_next: The next timestep in the forward integration sequence (t+dt).
            cond: conditional information.
            **kwargs: Additional arguments for model inference.

        Returns:
            An edict containing:
            - 'pred_x_prev': The estimated latent tensor at t_next.
            - 'pred_x_0': A prediction of x_0 (may be None as direct derivation is complex in LBM).
            - 'pred_eps': A prediction of eps (may be None).
        """
        # Get model's prediction of the drift (v)
        # We use the parent's _get_model_prediction. Its _v_to_xstart_eps uses sigma_min,
        # which is a dummy value here. For LBM, pred_v is the main output.
        pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
        
        # Calculate time step difference (dt)
        dt = t - t_prev # This is the forward step size
        
        # Sample noise for the stochastic part of the SDE
        # The SDE for LBM is dx_t = v(x_t, t) dt + sigma dB_t
        # For Euler, dB_t approx sqrt(dt) * Z, where Z ~ N(0,I)
        # noise_increment = sp.SparseTensor(
        #     feats=torch.randn_like(x_t.feats).to(x_t.feats.device),
        #     coords=x_t.coords,
        # )
        # if isinstance(x_t, sp.SparseTensor):
        #     noise_increment = sp.SparseTensor(
        #         feats=torch.randn_like(x_t.feats).to(x_t.feats.device),
        #         coords=x_t.coords,
        #     )
        # else:
        #     noise_increment = torch.randn_like(x_t).to(x_t.device)
        # noise_increment = noise_increment * self.sigma_bridge * torch.sqrt(torch.tensor(max(0.0, dt), device=x_t.device))
        # pred_x_prev = x_t - (t - t_prev) * pred_v - noise_increment
        pred_x_prev = x_t - (t - t_prev) * pred_v 
        return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0, "pred_eps": pred_eps})
    
class FlowMatchingSampler(FlowEulerSampler):
    """
    Implementation of Flow Matching using Euler sampling.
    Inherits from FlowEulerSampler and modifies key methods for flow matching.
    """
    def __init__(self, sigma_min: float = 0.0):
        super().__init__(sigma_min=sigma_min)

    def _compute_velocity(self, x_t: torch.Tensor, x_0: torch.Tensor, t: float) -> torch.Tensor:
        return ((1 - self.sigma_min) * x_t - x_0 ) / (self.sigma_min + (1 - self.sigma_min) * t)

    def _get_model_gt(self, x_1: torch.Tensor, t: float, x_0: torch.Tensor = None):
        # TODO: Implement this method
        pass
        # """
        # Get ground truth for training.
        # Args:
        #     x_1: Target endpoint
        #     t: Time point
        #     noise: Initial noise to use as x_0
        # """
        # x_t = (1 - t) * x_0 + t * x_1
        # v = self._compute_velocity(x_t, x_0, t)
        # eps = x_t + (1 - t) * v  # Convert velocity to noise
        # return x_t, eps, v

    def _v_to_xstart_eps(self, x_t: torch.Tensor, t: float, v: torch.Tensor):
        """Convert velocity to x_0 and noise predictions"""
        eps = x_t + (1 - t) * v
        x_0 = self._eps_to_xstart(x_t, t, eps)
        return x_0, eps

    @torch.no_grad()
    def sample(
        self,
        model,
        x_1: torch.Tensor,
        cond: Optional[Any] = None,
        steps: int = 50,
        rescale_t: float = 1.0,
        verbose: bool = True,
        **kwargs
    ) -> Dict[str, torch.Tensor]:
        """
        Generate samples by following the flow from noise to x_1.
        Args:
            model: The model to sample from
            x_1: Target endpoint
            cond: Conditional information
            steps: Number of sampling steps
            rescale_t: Time rescaling factor
            verbose: Whether to show progress bar
            **kwargs: Additional model arguments
        Returns:
            Dictionary containing sampling trajectory and predictions
        """
        # Initialize with noise as x_0
        noise = torch.randn_like(x_1)
        current_x = noise
        
        t_seq = np.linspace(1, 0, steps + 1)
        t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
        t_pairs = list(zip(t_seq[:-1], t_seq[1:]))
        
        ret = edict({
            "samples": None,
            "pred_x_t": [],
            "pred_x_0": []
        })
        
        for t, t_prev in tqdm(t_pairs, desc="Sampling", disable=not verbose):
            out = self.sample_once(model, current_x, t, t_prev, cond, **kwargs)
            current_x = out.pred_x_prev
            ret.pred_x_t.append(out.pred_x_prev)
            ret.pred_x_0.append(out.pred_x_0)
            
        ret.samples = current_x
        return ret

    def sample_once(
        self,
        model,
        x_t: torch.Tensor,
        t: float,
        t_prev: float,
        cond: Optional[Any] = None,
        **kwargs
    ) -> Dict:
        """
        Sample x_{t-1} from the model using Euler method.
        Args:
            model: The model to sample from
            x_t: Current state
            t: Current time
            t_prev: Next time step
            cond: Conditional information
            **kwargs: Additional model arguments
        Returns:
            Dictionary containing predictions
        """
        pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
        pred_x_prev = x_t + (t_prev - t) * pred_v
        return edict({
            "pred_x_prev": pred_x_prev,
            "pred_x_0": pred_x_0,
            "pred_eps": pred_eps
        })

class FlowEulerCfgSampler(ClassifierFreeGuidanceSamplerMixin, FlowEulerSampler):
    """
    Generate samples from a flow-matching model using Euler sampling with classifier-free guidance.
    """
    @torch.no_grad()
    def sample(
        self,
        model,
        noise,
        cond,
        neg_cond,
        steps: int = 50,
        rescale_t: float = 1.0,
        cfg_strength: float = 3.0,
        verbose: bool = True,
        **kwargs
    ):
        """
        Generate samples from the model using Euler method.
        
        Args:
            model: The model to sample from.
            noise: The initial noise tensor.
            cond: conditional information.
            neg_cond: negative conditional information.
            steps: The number of steps to sample.
            rescale_t: The rescale factor for t.
            cfg_strength: The strength of classifier-free guidance.
            verbose: If True, show a progress bar.
            **kwargs: Additional arguments for model_inference.

        Returns:
            a dict containing the following
            - 'samples': the model samples.
            - 'pred_x_t': a list of prediction of x_t.
            - 'pred_x_0': a list of prediction of x_0.
        """
        return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, **kwargs)


class FlowEulerGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, FlowEulerSampler):
    """
    Generate samples from a flow-matching model using Euler sampling with classifier-free guidance and interval.
    """
    @torch.no_grad()
    def sample(
        self,
        model,
        noise,
        cond,
        neg_cond,
        steps: int = 50,
        rescale_t: float = 1.0,
        cfg_strength: float = 3.0,
        cfg_interval: Tuple[float, float] = (0.0, 1.0),
        verbose: bool = True,
        **kwargs
    ):
        """
        Generate samples from the model using Euler method.
        
        Args:
            model: The model to sample from.
            noise: The initial noise tensor.
            cond: conditional information.
            neg_cond: negative conditional information.
            steps: The number of steps to sample.
            rescale_t: The rescale factor for t.
            cfg_strength: The strength of classifier-free guidance.
            cfg_interval: The interval for classifier-free guidance.
            verbose: If True, show a progress bar.
            **kwargs: Additional arguments for model_inference.

        Returns:
            a dict containing the following
            - 'samples': the model samples.
            - 'pred_x_t': a list of prediction of x_t.
            - 'pred_x_0': a list of prediction of x_0.
        """
        return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)

    def sample_opt(
        self,
        model,
        noise,
        cond,
        neg_cond,
        steps: int = 50,
        rescale_t: float = 1.0,
        cfg_strength: float = 3.0,
        cfg_interval: Tuple[float, float] = (0.0, 1.0),
        verbose: bool = True,
        **kwargs
    ):
        """
        Generate samples from the model using Euler method.
        
        Args:
            model: The model to sample from.
            noise: The initial noise tensor.
            cond: conditional information.
            neg_cond: negative conditional information.
            steps: The number of steps to sample.
            rescale_t: The rescale factor for t.
            cfg_strength: The strength of classifier-free guidance.
            cfg_interval: The interval for classifier-free guidance.
            verbose: If True, show a progress bar.
            **kwargs: Additional arguments for model_inference.

        Returns:
            a dict containing the following
            - 'samples': the model samples.
            - 'pred_x_t': a list of prediction of x_t.
            - 'pred_x_0': a list of prediction of x_0.
        """
        return super().sample_opt(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)

    def sample_opt_delta_v(
        self,
        model,
        slat_decoder_gs,
        slat_decoder_mesh,
        dreamsim_model,
        apperance_learning_rate,
        start_t,
        input_images,
        extrinsics, 
        intrinsics,
        noise,
        cond,
        neg_cond,
        steps: int = 50,
        rescale_t: float = 1.0,
        cfg_strength: float = 3.0,
        cfg_interval: Tuple[float, float] = (0.0, 1.0),
        verbose: bool = True,
        **kwargs
    ):
        """
        Generate samples from the model using Euler method.
        
        Args:
            model: The model to sample from.
            noise: The initial noise tensor.
            cond: conditional information.
            neg_cond: negative conditional information.
            steps: The number of steps to sample.
            rescale_t: The rescale factor for t.
            cfg_strength: The strength of classifier-free guidance.
            cfg_interval: The interval for classifier-free guidance.
            verbose: If True, show a progress bar.
            **kwargs: Additional arguments for model_inference.

        Returns:
            a dict containing the following
            - 'samples': the model samples.
            - 'pred_x_t': a list of prediction of x_t.
            - 'pred_x_0': a list of prediction of x_0.
        """
        return super().sample_opt_delta_v(model, slat_decoder_gs, slat_decoder_mesh, dreamsim_model, apperance_learning_rate, start_t, input_images, extrinsics, intrinsics,noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)


class LatentMatchGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, LatentMatchSampler):
    """
    Generate samples from a flow-matching model using Euler sampling with classifier-free guidance and interval.
    """
    @torch.no_grad()
    def sample(
        self,
        model,
        noise,
        cond,
        neg_cond,
        steps: int = 50,
        rescale_t: float = 1.0,
        cfg_strength: float = 3.0,
        cfg_interval: Tuple[float, float] = (0.0, 1.0),
        verbose: bool = True,
        **kwargs
    ):
        """
        Generate samples from the model using Euler method.
        
        Args:
            model: The model to sample from.
            noise: The initial noise tensor.
            cond: conditional information.
            neg_cond: negative conditional information.
            steps: The number of steps to sample.
            rescale_t: The rescale factor for t.
            cfg_strength: The strength of classifier-free guidance.
            cfg_interval: The interval for classifier-free guidance.
            verbose: If True, show a progress bar.
            **kwargs: Additional arguments for model_inference.

        Returns:
            a dict containing the following
            - 'samples': the model samples.
            - 'pred_x_t': a list of prediction of x_t.
            - 'pred_x_0': a list of prediction of x_0.
        """
        return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)