Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,557 Bytes
f3ff4f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
from typing import *
import torch
import numpy as np
from tqdm import tqdm
from easydict import EasyDict as edict
from .base import Sampler
from .classifier_free_guidance_mixin import ClassifierFreeGuidanceSamplerMixin
from .guidance_interval_mixin import GuidanceIntervalSamplerMixin
import math
from trellis.modules.spatial import patchify, unpatchify
from trellis.utils import render_utils, postprocessing_utils
from trellis.utils import loss_utils
import trellis.modules.sparse as sp
import torch.nn.functional as F
class FlowEulerSampler(Sampler):
"""
Generate samples from a flow-matching model using Euler sampling.
Args:
sigma_min: The minimum scale of noise in flow.
"""
def __init__(
self,
sigma_min: float,
):
self.sigma_min = sigma_min
def _eps_to_xstart(self, x_t, t, eps):
assert x_t.shape == eps.shape
return (x_t - (self.sigma_min + (1 - self.sigma_min) * t) * eps) / (1 - t)
def _xstart_to_x_t(self, x_0, t, eps):
assert x_0.shape == eps.shape
return (1-t) * x_0 + (self.sigma_min + (1 - self.sigma_min) * t) * eps
# return (1-t) * x_0 + t * eps + self.sigma_min * (1-t) * eps
def _xstart_to_eps(self, x_t, t, x_0):
assert x_t.shape == x_0.shape
return (x_t - (1 - t) * x_0) / (self.sigma_min + (1 - self.sigma_min) * t)
def _v_to_xstart_eps(self, x_t, t, v):
assert x_t.shape == v.shape
eps = (1 - t) * v + x_t
x_0 = (1 - self.sigma_min) * x_t - (self.sigma_min + (1 - self.sigma_min) * t) * v
return x_0, eps
def _xstart_to_v(self, x_0, x_t, t):
assert x_0.shape == x_t.shape
return (x_t - (1 - self.sigma_min) * x_0) / (self.sigma_min + (1 - self.sigma_min) * t)
def _inference_model(self, model, x_t, t, cond=None, **kwargs):
t = torch.tensor([1000 * t] * x_t.shape[0], device=x_t.device, dtype=torch.float32)
return model(x_t, t, cond, **kwargs)
def _get_model_prediction(self, model, x_t, t, cond=None, **kwargs):
param = kwargs.pop("parameterization", "v")
if param == "v":
pred_v = self._inference_model(model, x_t, t, cond, **kwargs)
pred_x_0, pred_eps = self._v_to_xstart_eps(x_t=x_t, t=t, v=pred_v)
elif param == "x0":
pred_x_0 = self._inference_model(model, x_t, t, cond, **kwargs)
pred_v = self._xstart_to_v(x_0=pred_x_0, x_t=x_t, t=t)
return pred_x_0, None, pred_v
def _get_model_gt(self, x_0, t, noise):
gt_x_t = self._xstart_to_x_t(x_0, t, noise)
gt_v = self._xstart_to_v(x_0, gt_x_t, t)
return gt_x_t, gt_v
@torch.no_grad()
def sample_once(
self,
model,
x_t,
t: float,
t_prev: float,
cond: Optional[Any] = None,
**kwargs
):
"""
Sample x_{t-1} from the model using Euler method.
Args:
model: The model to sample from.
x_t: The [N x C x ...] tensor of noisy inputs at time t.
t: The current timestep.
t_prev: The previous timestep.
cond: conditional information.
**kwargs: Additional arguments for model inference.
Returns:
a dict containing the following
- 'pred_x_prev': x_{t-1}.
- 'pred_x_0': a prediction of x_0.
"""
pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
pred_x_prev = x_t - (t - t_prev) * pred_v
return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0, "pred_eps": pred_eps})
def sample_once_opt(
self,
model,
x_t,
t: float,
t_prev: float,
cond: Optional[Any] = None,
**kwargs
):
"""
Sample x_{t-1} from the model using Euler method.
Args:
model: The model to sample from.
x_t: The [N x C x ...] tensor of noisy inputs at time t.
t: The current timestep.
t_prev: The previous timestep.
cond: conditional information.
**kwargs: Additional arguments for model inference.
Returns:
a dict containing the following
- 'pred_x_prev': x_{t-1}.
- 'pred_x_0': a prediction of x_0.
"""
pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
pred_x_prev = x_t - (t - t_prev) * pred_v
return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0, "pred_eps": pred_eps})
def sample_once_opt_delta_v(
self,
model,
slat_decoder_gs,
slat_decoder_mesh,
dreamsim_model,
learning_rate,
input_images,
extrinsics,
intrinsics,
x_t,
t: float,
t_prev: float,
cond: Optional[Any] = None,
**kwargs
):
"""
Sample x_{t-1} from the model using Euler method.
Args:
model: The model to sample from.
x_t: The [N x C x ...] tensor of noisy inputs at time t.
t: The current timestep.
t_prev: The previous timestep.
cond: conditional information.
**kwargs: Additional arguments for model inference.
Returns:
a dict containing the following
- 'pred_x_prev': x_{t-1}.
- 'pred_x_0': a prediction of x_0.
"""
torch.cuda.empty_cache()
with torch.no_grad():
pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
pred_v_opt_feat = torch.nn.Parameter(pred_v.feats.detach().clone())
optimizer = torch.optim.Adam([pred_v_opt_feat], betas=(0.5, 0.9), lr=learning_rate)
pred_v_opt = sp.SparseTensor(feats=pred_v_opt_feat, coords=pred_v.coords)
total_steps = 5
input_images = F.interpolate(input_images, size=(259, 259), mode='bilinear', align_corners=False)
with tqdm(total=total_steps, disable=True, desc='Appearance (opt): optimizing') as pbar:
for step in range(total_steps):
optimizer.zero_grad()
pred_x_0, _ = self._v_to_xstart_eps(x_t=x_t, t=t, v=pred_v_opt)
pred_gs = slat_decoder_gs(pred_x_0)
# pred_mesh = slat_decoder_mesh(pred_x_0)
rend_gs = render_utils.render_frames(pred_gs[0], extrinsics, intrinsics, {'resolution': 259, 'bg_color': (0, 0, 0)}, need_depth=True, opt=True)['color']
# rend_mesh = render_utils.render_frames_opt(pred_mesh[0], extrinsics, intrinsics, {'resolution': 518, 'bg_color': (0, 0, 0)}, need_depth=True)['color']
rend_gs = torch.stack(rend_gs, dim=0)
loss_gs = loss_utils.l1_loss(rend_gs, input_images) + (1 - loss_utils.ssim(rend_gs, input_images)) + loss_utils.lpips(rend_gs, input_images) + dreamsim_model(rend_gs, input_images).mean()
# loss_gs = (1 - loss_utils.ssim(rend_gs, input_images)) + loss_utils.lpips(rend_gs, input_images) + dreamsim_model(rend_gs, input_images).mean()
# loss_mesh = loss_utils.l1_loss(rend_mesh, input_images) + 0.2 * (1 - loss_utils.ssim(rend_mesh, input_images)) + 0.2 * loss_utils.lpips(rend_mesh, input_images)
loss = loss_gs + 0.2 * loss_utils.l1_loss(pred_v_opt_feat, pred_v.feats)
loss.backward()
optimizer.step()
pbar.set_postfix({'loss': loss.item()})
pbar.update()
pred_x_prev = x_t - (t - t_prev) * pred_v_opt.detach()
torch.cuda.empty_cache()
return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0, "pred_eps": pred_eps})
def sample_opt(
self,
model,
noise,
cond: Optional[Any] = None,
steps: int = 50,
rescale_t: float = 1.0,
verbose: bool = True,
**kwargs
):
"""
Generate samples from the model using Euler method.
Args:
model: The model to sample from.
noise: The initial noise tensor.
cond: conditional information.
steps: The number of steps to sample.
rescale_t: The rescale factor for t.
verbose: If True, show a progress bar.
**kwargs: Additional arguments for model_inference.
Returns:
a dict containing the following
- 'samples': the model samples.
- 'pred_x_t': a list of prediction of x_t.
- 'pred_x_0': a list of prediction of x_0.
"""
sample = noise
t_seq = np.linspace(1, 0, steps + 1)
t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
t_pairs = list((t_seq[i], t_seq[i + 1]) for i in range(steps))
ret = edict({"samples": None, "pred_x_t": [], "pred_x_0": []})
for t, t_prev in tqdm(t_pairs, desc="Sampling", disable=not verbose):
out = self.sample_once_opt(model, sample, t, t_prev, cond, **kwargs)
sample = out.pred_x_prev
ret.pred_x_t.append(out.pred_x_prev)
ret.pred_x_0.append(out.pred_x_0)
ret.samples = sample
return ret
def sample_opt_delta_v(
self,
model,
slat_decoder_gs,
slat_decoder_mesh,
dreamsim_model,
apperance_learning_rate,
start_t,
input_images,
extrinsics,
intrinsics,
noise,
cond: Optional[Any] = None,
steps: int = 50,
rescale_t: float = 1.0,
verbose: bool = True,
**kwargs
):
"""
Generate samples from the model using Euler method.
Args:
model: The model to sample from.
noise: The initial noise tensor.
cond: conditional information.
steps: The number of steps to sample.
rescale_t: The rescale factor for t.
verbose: If True, show a progress bar.
**kwargs: Additional arguments for model_inference.
Returns:
a dict containing the following
- 'samples': the model samples.
- 'pred_x_t': a list of prediction of x_t.
- 'pred_x_0': a list of prediction of x_0.
"""
sample = noise
t_seq = np.linspace(1, 0, steps + 1)
t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
t_pairs = list((t_seq[i], t_seq[i + 1]) for i in range(steps))
ret = edict({"samples": None, "pred_x_t": [], "pred_x_0": []})
# def cosine_anealing(step, total_steps, start_lr, end_lr):
# return end_lr + 0.5 * (start_lr - end_lr) * (1 + np.cos(np.pi * step / total_steps))
for i, (t, t_prev) in enumerate(tqdm(t_pairs, desc="Sampling", disable=not verbose)):
if t > start_t:
out = self.sample_once(model, sample, t, t_prev, cond, **kwargs)
sample = out.pred_x_prev
ret.pred_x_t.append(out.pred_x_prev)
ret.pred_x_0.append(out.pred_x_0)
else:
# learning_rate = cosine_anealing(i - int(np.where(t_seq <= start_t)[0].min()), int(steps - np.where(t_seq <= start_t)[0].min()), apperance_learning_rate, 1e-5)
learning_rate = apperance_learning_rate
out = self.sample_once_opt_delta_v(model, slat_decoder_gs, slat_decoder_mesh, dreamsim_model, learning_rate, input_images, extrinsics, intrinsics, sample, t, t_prev, cond, **kwargs)
sample = out.pred_x_prev
ret.pred_x_t.append(out.pred_x_prev)
ret.pred_x_0.append(out.pred_x_0)
ret.samples = sample
return ret
@torch.no_grad()
def sample(
self,
model,
noise,
cond: Optional[Any] = None,
steps: int = 50,
rescale_t: float = 1.0,
verbose: bool = True,
**kwargs
):
"""
Generate samples from the model using Euler method.
Args:
model: The model to sample from.
noise: The initial noise tensor.
cond: conditional information.
steps: The number of steps to sample.
rescale_t: The rescale factor for t.
verbose: If True, show a progress bar.
**kwargs: Additional arguments for model_inference.
Returns:
a dict containing the following
- 'samples': the model samples.
- 'pred_x_t': a list of prediction of x_t.
- 'pred_x_0': a list of prediction of x_0.
"""
sample = noise
t_seq = np.linspace(1, 0, steps + 1)
t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
t_pairs = list((t_seq[i], t_seq[i + 1]) for i in range(steps))
ret = edict({"samples": None, "pred_x_t": [], "pred_x_0": []})
for t, t_prev in tqdm(t_pairs, desc="Sampling", disable=not verbose):
out = self.sample_once(model, sample, t, t_prev, cond, **kwargs)
sample = out.pred_x_prev
ret.pred_x_t.append(out.pred_x_prev)
ret.pred_x_0.append(out.pred_x_0)
ret.samples = sample
return ret
class LatentMatchSampler(FlowEulerSampler):
"""
Generate samples from a Bridge Matching model using Euler sampling.
This sampler is designed for Latent Bridge Matching (LBM), where
the target (x_1) for training is assumed to be sampled from a Gaussian distribution,
and the source (x_0) for inference is also typically a Gaussian noise.
Args:
sigma_bridge: The sigma parameter for the Bridge Matching stochastic interpolant.
This controls the amount of stochasticity in the SDE (LBM paper Eq 1).
"""
def __init__(
self,
sigma_bridge: float = 0.1,
**kwargs
):
# Call parent constructor with a dummy sigma_min.
# sigma_min is specific to Flow Matching's interpolant, which we override.
super().__init__(sigma_min=0.0, **kwargs)
self.sigma_bridge = sigma_bridge
# Override _xstart_to_x_t for Bridge Matching's stochastic interpolant
# This method is used to generate gt_x_t for training.
def _xstart_to_x_t(self, x_0: torch.Tensor, t: float, noise: torch.Tensor, x_1: torch.Tensor) -> torch.Tensor:
"""
Calculates x_t according to the Bridge Matching stochastic interpolant.
This function is used during training to generate noisy samples x_t from
paired x_0 and x_1 samples. The 'x_1' argument is crucial for Bridge Matching.
Args:
x_0: The source latent tensor (e.g., from a data distribution or Gaussian).
t: The current timestep (float between 0 and 1).
eps: A random noise tensor (epsilon).
x_1: The target latent tensor. Required for Bridge Matching.
Returns:
The interpolated latent tensor x_t.
"""
# LBM interpolant formula: x_t = (1-t)x_0 + t*x_1 + sigma_bridge*sqrt(t*(1-t))*epsilon
return (1 - t) * x_0 + t * x_1 + self.sigma_bridge * math.sqrt(t * (1 - t)) * noise
# This method is used to calculate gt_v for training.
def _xstart_to_v(self, x_0: torch.Tensor, x_t: torch.Tensor, t: float, x_1: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Calculates the ground truth drift (v) that the model should predict for Bridge Matching.
This function is used in the training objective to define the target for the model.
Args:
x_0: The source latent tensor.
x_t: The interpolated latent tensor at time t.
t: The current timestep (float between 0 and 1).
x_1: The target latent tensor. Required for Bridge Matching.
Returns:
The target drift tensor v.
"""
if x_1 is None:
# This branch should ideally not be hit during _get_model_gt for LBM.
raise ValueError("For Bridge Matching's target drift calculation, x_1 (target latent) must be provided.")
assert x_t.shape == x_1.shape, "x_t and x_1 shapes must match."
# LBM drift formula: v = (x_1 - x_t) / (1 - t)
# Add a small epsilon to (1-t) to prevent division by zero if t is exactly 1.
epsilon_t = 1e-5 # Small epsilon for numerical stability
return (x_t - x_0) / (t + epsilon_t)
# Override _get_model_gt to provide ground truth for Bridge Matching training.
# In this simplified case, x_1 is sampled from a Gaussian distribution.
def _get_model_gt(self, x_0: torch.Tensor, t: float, x_1: torch.Tensor):
"""
Calculates ground truth x_t and v_target for Bridge Matching training purposes.
In this simplified case, x_1 is sampled from a Gaussian distribution.
Args:
x_0: The source latent tensor (e.g., from a data distribution, or another Gaussian).
t: The current timestep.
noise: A random noise tensor (epsilon).
Returns:
A tuple (gt_x_t, gt_v).
"""
# Sample x_1 from a Gaussian distribution with the same shape as x_0
# This simulates the target distribution being Gaussian.
if isinstance(x_0, sp.SparseTensor):
noise = sp.SparseTensor(
feats=torch.randn_like(x_0.feats).to(x_0.feats.device),
coords=x_0.coords,
)
else:
noise = torch.randn_like(x_0).to(x_0.device)
# For Bridge Matching, _xstart_to_x_t needs x_1
gt_x_t = self._xstart_to_x_t(x_0, t, noise, x_1=x_1)
gt_v = self._xstart_to_v(x_0, gt_x_t, t, x_1=x_1)
return gt_x_t, gt_v
# Override sample_once to include the stochastic term for SDE integration.
@torch.no_grad()
def sample_once(
self,
model,
x_t: torch.Tensor,
t: float,
t_prev: float,
cond: Optional[Any] = None,
**kwargs
) -> edict:
"""
Performs a single Euler step to sample x_{t_next} from x_t for Bridge Matching.
The model is assumed to predict the drift 'v' as per LBM's formulation.
Args:
model: The model to sample from (should be trained for Bridge Matching).
x_t: The [N x C x ...] tensor of current latent inputs at time t.
t: The current timestep.
t_next: The next timestep in the forward integration sequence (t+dt).
cond: conditional information.
**kwargs: Additional arguments for model inference.
Returns:
An edict containing:
- 'pred_x_prev': The estimated latent tensor at t_next.
- 'pred_x_0': A prediction of x_0 (may be None as direct derivation is complex in LBM).
- 'pred_eps': A prediction of eps (may be None).
"""
# Get model's prediction of the drift (v)
# We use the parent's _get_model_prediction. Its _v_to_xstart_eps uses sigma_min,
# which is a dummy value here. For LBM, pred_v is the main output.
pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
# Calculate time step difference (dt)
dt = t - t_prev # This is the forward step size
# Sample noise for the stochastic part of the SDE
# The SDE for LBM is dx_t = v(x_t, t) dt + sigma dB_t
# For Euler, dB_t approx sqrt(dt) * Z, where Z ~ N(0,I)
# noise_increment = sp.SparseTensor(
# feats=torch.randn_like(x_t.feats).to(x_t.feats.device),
# coords=x_t.coords,
# )
# if isinstance(x_t, sp.SparseTensor):
# noise_increment = sp.SparseTensor(
# feats=torch.randn_like(x_t.feats).to(x_t.feats.device),
# coords=x_t.coords,
# )
# else:
# noise_increment = torch.randn_like(x_t).to(x_t.device)
# noise_increment = noise_increment * self.sigma_bridge * torch.sqrt(torch.tensor(max(0.0, dt), device=x_t.device))
# pred_x_prev = x_t - (t - t_prev) * pred_v - noise_increment
pred_x_prev = x_t - (t - t_prev) * pred_v
return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0, "pred_eps": pred_eps})
class FlowMatchingSampler(FlowEulerSampler):
"""
Implementation of Flow Matching using Euler sampling.
Inherits from FlowEulerSampler and modifies key methods for flow matching.
"""
def __init__(self, sigma_min: float = 0.0):
super().__init__(sigma_min=sigma_min)
def _compute_velocity(self, x_t: torch.Tensor, x_0: torch.Tensor, t: float) -> torch.Tensor:
return ((1 - self.sigma_min) * x_t - x_0 ) / (self.sigma_min + (1 - self.sigma_min) * t)
def _get_model_gt(self, x_1: torch.Tensor, t: float, x_0: torch.Tensor = None):
# TODO: Implement this method
pass
# """
# Get ground truth for training.
# Args:
# x_1: Target endpoint
# t: Time point
# noise: Initial noise to use as x_0
# """
# x_t = (1 - t) * x_0 + t * x_1
# v = self._compute_velocity(x_t, x_0, t)
# eps = x_t + (1 - t) * v # Convert velocity to noise
# return x_t, eps, v
def _v_to_xstart_eps(self, x_t: torch.Tensor, t: float, v: torch.Tensor):
"""Convert velocity to x_0 and noise predictions"""
eps = x_t + (1 - t) * v
x_0 = self._eps_to_xstart(x_t, t, eps)
return x_0, eps
@torch.no_grad()
def sample(
self,
model,
x_1: torch.Tensor,
cond: Optional[Any] = None,
steps: int = 50,
rescale_t: float = 1.0,
verbose: bool = True,
**kwargs
) -> Dict[str, torch.Tensor]:
"""
Generate samples by following the flow from noise to x_1.
Args:
model: The model to sample from
x_1: Target endpoint
cond: Conditional information
steps: Number of sampling steps
rescale_t: Time rescaling factor
verbose: Whether to show progress bar
**kwargs: Additional model arguments
Returns:
Dictionary containing sampling trajectory and predictions
"""
# Initialize with noise as x_0
noise = torch.randn_like(x_1)
current_x = noise
t_seq = np.linspace(1, 0, steps + 1)
t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
t_pairs = list(zip(t_seq[:-1], t_seq[1:]))
ret = edict({
"samples": None,
"pred_x_t": [],
"pred_x_0": []
})
for t, t_prev in tqdm(t_pairs, desc="Sampling", disable=not verbose):
out = self.sample_once(model, current_x, t, t_prev, cond, **kwargs)
current_x = out.pred_x_prev
ret.pred_x_t.append(out.pred_x_prev)
ret.pred_x_0.append(out.pred_x_0)
ret.samples = current_x
return ret
def sample_once(
self,
model,
x_t: torch.Tensor,
t: float,
t_prev: float,
cond: Optional[Any] = None,
**kwargs
) -> Dict:
"""
Sample x_{t-1} from the model using Euler method.
Args:
model: The model to sample from
x_t: Current state
t: Current time
t_prev: Next time step
cond: Conditional information
**kwargs: Additional model arguments
Returns:
Dictionary containing predictions
"""
pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
pred_x_prev = x_t + (t_prev - t) * pred_v
return edict({
"pred_x_prev": pred_x_prev,
"pred_x_0": pred_x_0,
"pred_eps": pred_eps
})
class FlowEulerCfgSampler(ClassifierFreeGuidanceSamplerMixin, FlowEulerSampler):
"""
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance.
"""
@torch.no_grad()
def sample(
self,
model,
noise,
cond,
neg_cond,
steps: int = 50,
rescale_t: float = 1.0,
cfg_strength: float = 3.0,
verbose: bool = True,
**kwargs
):
"""
Generate samples from the model using Euler method.
Args:
model: The model to sample from.
noise: The initial noise tensor.
cond: conditional information.
neg_cond: negative conditional information.
steps: The number of steps to sample.
rescale_t: The rescale factor for t.
cfg_strength: The strength of classifier-free guidance.
verbose: If True, show a progress bar.
**kwargs: Additional arguments for model_inference.
Returns:
a dict containing the following
- 'samples': the model samples.
- 'pred_x_t': a list of prediction of x_t.
- 'pred_x_0': a list of prediction of x_0.
"""
return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, **kwargs)
class FlowEulerGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, FlowEulerSampler):
"""
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance and interval.
"""
@torch.no_grad()
def sample(
self,
model,
noise,
cond,
neg_cond,
steps: int = 50,
rescale_t: float = 1.0,
cfg_strength: float = 3.0,
cfg_interval: Tuple[float, float] = (0.0, 1.0),
verbose: bool = True,
**kwargs
):
"""
Generate samples from the model using Euler method.
Args:
model: The model to sample from.
noise: The initial noise tensor.
cond: conditional information.
neg_cond: negative conditional information.
steps: The number of steps to sample.
rescale_t: The rescale factor for t.
cfg_strength: The strength of classifier-free guidance.
cfg_interval: The interval for classifier-free guidance.
verbose: If True, show a progress bar.
**kwargs: Additional arguments for model_inference.
Returns:
a dict containing the following
- 'samples': the model samples.
- 'pred_x_t': a list of prediction of x_t.
- 'pred_x_0': a list of prediction of x_0.
"""
return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)
def sample_opt(
self,
model,
noise,
cond,
neg_cond,
steps: int = 50,
rescale_t: float = 1.0,
cfg_strength: float = 3.0,
cfg_interval: Tuple[float, float] = (0.0, 1.0),
verbose: bool = True,
**kwargs
):
"""
Generate samples from the model using Euler method.
Args:
model: The model to sample from.
noise: The initial noise tensor.
cond: conditional information.
neg_cond: negative conditional information.
steps: The number of steps to sample.
rescale_t: The rescale factor for t.
cfg_strength: The strength of classifier-free guidance.
cfg_interval: The interval for classifier-free guidance.
verbose: If True, show a progress bar.
**kwargs: Additional arguments for model_inference.
Returns:
a dict containing the following
- 'samples': the model samples.
- 'pred_x_t': a list of prediction of x_t.
- 'pred_x_0': a list of prediction of x_0.
"""
return super().sample_opt(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)
def sample_opt_delta_v(
self,
model,
slat_decoder_gs,
slat_decoder_mesh,
dreamsim_model,
apperance_learning_rate,
start_t,
input_images,
extrinsics,
intrinsics,
noise,
cond,
neg_cond,
steps: int = 50,
rescale_t: float = 1.0,
cfg_strength: float = 3.0,
cfg_interval: Tuple[float, float] = (0.0, 1.0),
verbose: bool = True,
**kwargs
):
"""
Generate samples from the model using Euler method.
Args:
model: The model to sample from.
noise: The initial noise tensor.
cond: conditional information.
neg_cond: negative conditional information.
steps: The number of steps to sample.
rescale_t: The rescale factor for t.
cfg_strength: The strength of classifier-free guidance.
cfg_interval: The interval for classifier-free guidance.
verbose: If True, show a progress bar.
**kwargs: Additional arguments for model_inference.
Returns:
a dict containing the following
- 'samples': the model samples.
- 'pred_x_t': a list of prediction of x_t.
- 'pred_x_0': a list of prediction of x_0.
"""
return super().sample_opt_delta_v(model, slat_decoder_gs, slat_decoder_mesh, dreamsim_model, apperance_learning_rate, start_t, input_images, extrinsics, intrinsics,noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)
class LatentMatchGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, LatentMatchSampler):
"""
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance and interval.
"""
@torch.no_grad()
def sample(
self,
model,
noise,
cond,
neg_cond,
steps: int = 50,
rescale_t: float = 1.0,
cfg_strength: float = 3.0,
cfg_interval: Tuple[float, float] = (0.0, 1.0),
verbose: bool = True,
**kwargs
):
"""
Generate samples from the model using Euler method.
Args:
model: The model to sample from.
noise: The initial noise tensor.
cond: conditional information.
neg_cond: negative conditional information.
steps: The number of steps to sample.
rescale_t: The rescale factor for t.
cfg_strength: The strength of classifier-free guidance.
cfg_interval: The interval for classifier-free guidance.
verbose: If True, show a progress bar.
**kwargs: Additional arguments for model_inference.
Returns:
a dict containing the following
- 'samples': the model samples.
- 'pred_x_t': a list of prediction of x_t.
- 'pred_x_0': a list of prediction of x_0.
"""
return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)
|