File size: 17,276 Bytes
f3ff4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056741
4c75ed6
 
f3ff4f1
 
 
 
 
 
 
 
 
 
5c98c5d
2ada28d
f3ff4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ada28d
4c75ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ada28d
f3ff4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c75ed6
f3ff4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c75ed6
 
 
 
 
 
 
 
 
 
 
 
f3ff4f1
4c75ed6
 
 
 
 
 
 
 
 
 
 
 
f3ff4f1
 
 
 
 
 
 
4c75ed6
 
f3ff4f1
 
 
 
4c75ed6
 
f3ff4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c75ed6
 
 
 
 
4c99c56
 
 
 
f3ff4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d094b5
f3ff4f1
 
2ada28d
4c99c56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D

import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisVGGTTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils



MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
# TMP_DIR = "tmp/Trellis-demo"
# os.environ['GRADIO_TEMP_DIR'] = 'tmp'
os.makedirs(TMP_DIR, exist_ok=True)

def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
    
def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)

@spaces.GPU
def preprocess_image(image: Image.Image) -> Image.Image:
    """
    Preprocess the input image for 3D generation.
    
    This function is called when a user uploads an image or selects an example.
    It applies background removal and other preprocessing steps necessary for
    optimal 3D model generation.

    Args:
        image (Image.Image): The input image from the user

    Returns:
        Image.Image: The preprocessed image ready for 3D generation
    """
    processed_image = pipeline.preprocess_image(image)
    return processed_image

@spaces.GPU
def preprocess_videos(video: str) -> List[Tuple[Image.Image, str]]:
    """
    Preprocess the input video for multi-image 3D generation.
    
    This function is called when a user uploads a video.
    It extracts frames from the video and processes each frame to prepare them
    for the multi-image 3D generation pipeline.
    
    Args:
        video (str): The path to the input video file
        
    Returns:
        List[Tuple[Image.Image, str]]: The list of preprocessed images ready for 3D generation
    """
    vid = imageio.get_reader(video, 'ffmpeg')
    fps = vid.get_meta_data()['fps']
    images = []
    for i, frame in enumerate(vid):
        if i % max(int(fps * 1), 1) == 0:
            img = Image.fromarray(frame)
            W, H = img.size
            img = img.resize((int(W / H * 512), 512))
            images.append(img)
    vid.close()
    processed_images = [pipeline.preprocess_image(image) for image in images]
    return processed_images

@spaces.GPU
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
    """
    Preprocess a list of input images for multi-image 3D generation.
    
    This function is called when users upload multiple images in the gallery.
    It processes each image to prepare them for the multi-image 3D generation pipeline.
    
    Args:
        images (List[Tuple[Image.Image, str]]): The input images from the gallery
        
    Returns:
        List[Image.Image]: The preprocessed images ready for 3D generation
    """
    images = [image[0] for image in images]
    processed_images = [pipeline.preprocess_image(image) for image in images]
    return processed_images


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh


def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Get the random seed for generation.
    
    This function is called by the generate button to determine whether to use
    a random seed or the user-specified seed value.
    
    Args:
        randomize_seed (bool): Whether to generate a random seed
        seed (int): The user-specified seed value
        
    Returns:
        int: The seed to use for generation
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed


@spaces.GPU(duration=120)
def generate_and_extract_glb(
    multiimages: List[Tuple[Image.Image, str]],
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    multiimage_algo: Literal["multidiffusion", "stochastic"],
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[dict, str, str, str]:
    """
    Convert an image to a 3D model and extract GLB file.

    Args:
        image (Image.Image): The input image.
        multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
        is_multiimage (bool): Whether is in multi-image mode.
        seed (int): The random seed.
        ss_guidance_strength (float): The guidance strength for sparse structure generation.
        ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
        slat_guidance_strength (float): The guidance strength for structured latent generation.
        slat_sampling_steps (int): The number of sampling steps for structured latent generation.
        multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.

    Returns:
        dict: The information of the generated 3D model.
        str: The path to the video of the 3D model.
        str: The path to the extracted GLB file.
        str: The path to the extracted GLB file (for download).
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    image_files = [image[0] for image in multiimages]

    # Generate 3D model
    outputs = pipeline.run(
        image=image_files,
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
        mode=multiimage_algo,
    )

    # Render video
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    
    # Extract GLB
    gs = outputs['gaussian'][0]
    mesh = outputs['mesh'][0]
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    
    # Pack state for optional Gaussian extraction
    state = pack_state(gs, mesh)
    
    torch.cuda.empty_cache()
    return state, video_path, glb_path, glb_path


@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
    """
    Extract a Gaussian splatting file from the generated 3D model.
    
    This function is called when the user clicks "Extract Gaussian" button.
    It converts the 3D model state into a .ply file format containing
    Gaussian splatting data for advanced 3D applications.

    Args:
        state (dict): The state of the generated 3D model containing Gaussian data
        req (gr.Request): Gradio request object for session management

    Returns:
        Tuple[str, str]: Paths to the extracted Gaussian file (for display and download)
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, 'sample.ply')
    gs.save_ply(gaussian_path)
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path


def prepare_multi_example() -> List[Image.Image]:
    multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
    images = []
    for case in multi_case:
        _images = []
        for i in range(1, 9):
            if os.path.exists(f'assets/example_multi_image/{case}_{i}.png'):
                img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
                W, H = img.size
                img = img.resize((int(W / H * 512), 512))
                _images.append(np.array(img))
        if len(_images) > 0:
            images.append(Image.fromarray(np.concatenate(_images, axis=1)))
    return images


def split_image(image: Image.Image) -> List[Image.Image]:
    """
    Split a multi-view image into separate view images.
    
    This function is called when users select multi-image examples that contain
    multiple views in a single concatenated image. It automatically splits them
    based on alpha channel boundaries and preprocesses each view.
    
    Args:
        image (Image.Image): A concatenated image containing multiple views
        
    Returns:
        List[Image.Image]: List of individual preprocessed view images
    """
    image = np.array(image)
    alpha = image[..., 3]
    alpha = np.any(alpha>0, axis=0)
    start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
    end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
    images = []
    for s, e in zip(start_pos, end_pos):
        images.append(Image.fromarray(image[:, s:e+1]))
    return [preprocess_image(image) for image in images]

# Create interface
demo = gr.Blocks(
    title="ReconViaGen",
    css="""
        .slider .inner { width: 5px; background: #FFF; }
        .viewport { aspect-ratio: 4/3; }
        .tabs button.selected { font-size: 20px !important; color: crimson !important; }
        h1, h2, h3 { text-align: center; display: block; }
        .md_feedback li { margin-bottom: 0px !important; }
    """
)
with demo:
    gr.Markdown("""
    # 💻 ReconViaGen
    <p align="center">
    <a title="Github" href="https://github.com/GAP-LAB-CUHK-SZ/ReconViaGen" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://img.shields.io/github/stars/GAP-LAB-CUHK-SZ/ReconViaGen?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
    </a>
    <a title="Website" href="https://jiahao620.github.io/reconviagen/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://www.obukhov.ai/img/badges/badge-website.svg">
    </a>
    <a title="arXiv" href="https://jiahao620.github.io/reconviagen/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
    </a>
    </p>
    
    ✨This demo is partial. We will release the whole model later. Stay tuned!✨
    """)
    
    with gr.Row():
        with gr.Column():
            with gr.Tabs() as input_tabs:
                with gr.Tab(label="Input Video or Images", id=0) as multiimage_input_tab:
                    input_video = gr.Video(label="Upload Video", interactive=True, height=300)
                    image_prompt = gr.Image(label="Image Prompt", format="png", visible=False, image_mode="RGBA", type="pil", height=300)
                    multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
                    gr.Markdown("""
                        Input different views of the object in separate images. 
                        
                        *NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
                    """)
        
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=30, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="multidiffusion")
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)

            generate_btn = gr.Button("Generate & Extract GLB", variant="primary")
            extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
            gr.Markdown("""
                        *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
                        """)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
            
            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)  
    
    output_buf = gr.State()

    # Example images at the bottom of the page
    with gr.Row() as multiimage_example:
        examples_multi = gr.Examples(
            examples=prepare_multi_example(),
            inputs=[image_prompt],
            fn=split_image,
            outputs=[multiimage_prompt],
            run_on_click=True,
            examples_per_page=8,
        )

    # Handlers
    demo.load(start_session)
    demo.unload(end_session)

    input_video.upload(
        preprocess_videos,
        inputs=[input_video],
        outputs=[multiimage_prompt],
    )
    input_video.clear(
        lambda: tuple([None, None]),
        outputs=[input_video, multiimage_prompt],
    )
    multiimage_prompt.upload(
        preprocess_images,
        inputs=[multiimage_prompt],
        outputs=[multiimage_prompt],
    )

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        generate_and_extract_glb,
        inputs=[multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size],
        outputs=[output_buf, video_output, model_output, download_glb],
    ).then(
        lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
        outputs=[extract_gs_btn, download_glb],
    )

    video_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[extract_gs_btn, download_glb, download_gs],
    )
    
    extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_gs],
    )

    model_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[download_glb, download_gs],
    )
    

# Launch the Gradio app
if __name__ == "__main__":
    pipeline = TrellisVGGTTo3DPipeline.from_pretrained("Stable-X/trellis-vggt-v0-1")
    pipeline.cuda()
    pipeline.VGGT_model.cuda()
    pipeline.birefnet_model.cuda()
    demo.launch()