File size: 4,981 Bytes
f3ff4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from typing import *
import torch
import torch.nn as nn
from ...modules.utils import convert_module_to_f16, convert_module_to_f32, convert_module_to_bf16
from ...modules import sparse as sp
from ...modules.transformer import AbsolutePositionEmbedder
from ...modules.sparse.transformer import SparseTransformerBlock


def block_attn_config(self):
    """
    Return the attention configuration of the model.
    """
    for i in range(self.num_blocks):
        if self.attn_mode == "shift_window":
            yield "serialized", self.window_size, 0, (16 * (i % 2),) * 3, sp.SerializeMode.Z_ORDER
        elif self.attn_mode == "shift_sequence":
            yield "serialized", self.window_size, self.window_size // 2 * (i % 2), (0, 0, 0), sp.SerializeMode.Z_ORDER
        elif self.attn_mode == "shift_order":
            yield "serialized", self.window_size, 0, (0, 0, 0), sp.SerializeModes[i % 4]
        elif self.attn_mode == "full":
            yield "full", None, None, None, None
        elif self.attn_mode == "swin":
            yield "windowed", self.window_size, None, self.window_size // 2 * (i % 2), None


class SparseTransformerBase(nn.Module):
    """
    Sparse Transformer without output layers.
    Serve as the base class for encoder and decoder.
    """
    def __init__(
        self,
        in_channels: int,
        model_channels: int,
        num_blocks: int,
        num_heads: Optional[int] = None,
        num_head_channels: Optional[int] = 64,
        mlp_ratio: float = 4.0,
        attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
        window_size: Optional[int] = None,
        pe_mode: Literal["ape", "rope"] = "ape",
        use_fp16: bool = False,
        use_bf16: bool = False,
        use_checkpoint: bool = False,
        qk_rms_norm: bool = False,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.num_blocks = num_blocks
        self.window_size = window_size
        self.num_heads = num_heads or model_channels // num_head_channels
        self.mlp_ratio = mlp_ratio
        self.attn_mode = attn_mode
        self.pe_mode = pe_mode
        self.use_fp16 = use_fp16
        self.use_bf16 = use_bf16
        self.use_checkpoint = use_checkpoint
        self.qk_rms_norm = qk_rms_norm
        if use_fp16:
            self.dtype = torch.float16
        elif use_bf16:
            self.dtype = torch.bfloat16
        else:
            self.dtype = torch.float32

        if pe_mode == "ape":
            self.pos_embedder = AbsolutePositionEmbedder(model_channels)

        self.input_layer = sp.SparseLinear(in_channels, model_channels)
        self.blocks = nn.ModuleList([
            SparseTransformerBlock(
                model_channels,
                num_heads=self.num_heads,
                mlp_ratio=self.mlp_ratio,
                attn_mode=attn_mode,
                window_size=window_size,
                shift_sequence=shift_sequence,
                shift_window=shift_window,
                serialize_mode=serialize_mode,
                use_checkpoint=self.use_checkpoint,
                use_rope=(pe_mode == "rope"),
                qk_rms_norm=self.qk_rms_norm,
            )
            for attn_mode, window_size, shift_sequence, shift_window, serialize_mode in block_attn_config(self)
        ])

    @property
    def device(self) -> torch.device:
        """
        Return the device of the model.
        """
        return next(self.parameters()).device

    def convert_to_fp16(self) -> None:
        """
        Convert the torso of the model to float16.
        """
        self.use_fp16 = True
        self.use_bf16 = False
        self.dtype = torch.float16
        self.blocks.apply(convert_module_to_f16)

    def convert_to_bf16(self) -> None:
        """
        Convert the torso of the model to bfloat16.
        """
        self.use_fp16 = False
        self.use_bf16 = True
        self.dtype = torch.bfloat16
        self.blocks.apply(convert_module_to_bf16)

    def convert_to_fp32(self) -> None:
        """
        Convert the torso of the model to float32.
        """
        self.use_fp16 = False
        self.use_bf16 = False
        self.dtype = torch.float32
        self.blocks.apply(convert_module_to_f32)

    def initialize_weights(self) -> None:
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

    def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
        h = self.input_layer(x)
        if self.pe_mode == "ape":
            h = h + self.pos_embedder(x.coords[:, 1:])
        h = h.type(self.dtype)
        for block in self.blocks:
            h = block(h)
        return h