import pandas as pd import gradio as gr from huggingface_hub import InferenceClient # Initialize the InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Load your CSV file df = pd.read_csv("your_file.csv") # Create dropdowns for exam name, year, and problem number exam_names = df["exam name"].unique() year_options = df["year"].unique() problem_numbers = df["problem number"].unique() exam_dropdown = gr.Dropdown(exam_names, label="Exam Name") year_dropdown = gr.Dropdown(year_options, label="Year") problem_dropdown = gr.Dropdown(problem_numbers, label="Problem Number") # Define the functions for the three buttons def solve_problem(exam, year, problem): problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem"].values[0] prompt = f"Solve the following problem: {problem_statement}" response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95, model = "HuggingFaceH4/zephyr-7b-beta") return response[0]['generated_text'] def give_hints(exam, year, problem): problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem"].values[0] prompt = f"Give hints for the following problem: {problem_statement}" response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95, model = "HuggingFaceH4/zephyr-7b-beta") return response[0]['generated_text'] def create_similar_problem(exam, year, problem): problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem"].values[0] prompt = f"Create a similar problem to the following one: {problem_statement}" response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95, model = "HuggingFaceH4/zephyr-7b-beta") return response[0]['generated_text'] # Define the chat response function def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Create Gradio interface with Blocks context with gr.Blocks() as dropdown_interface: with gr.Column(): exam_dropdown.render() year_dropdown.render() problem_dropdown.render() solve_button = gr.Button("Solve Problem") hints_button = gr.Button("Give Hints") similar_problem_button = gr.Button("Create Similar Problem") output_text = gr.Textbox(label="Output") solve_button.click(solve_problem, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text) hints_button.click(give_hints, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text) similar_problem_button.click(create_similar_problem, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text) chat_interface = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) # Combine both interfaces into a tabbed layout tabbed_interface = gr.TabbedInterface( [dropdown_interface, chat_interface], ["Problem Solver", "Chat Interface"] ) # Launch the app if __name__ == "__main__": tabbed_interface.launch()