SrijitMukherjee commited on
Commit
778c7b2
·
verified ·
1 Parent(s): 6a4359d

Rename app.py to app123.py

Browse files
Files changed (2) hide show
  1. app.py +0 -191
  2. app123.py +63 -0
app.py DELETED
@@ -1,191 +0,0 @@
1
- # import gradio as gr
2
- # from huggingface_hub import InferenceClient
3
- # import pandas as pd
4
-
5
- # """
6
- # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
- # """
8
- # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
-
10
- # ################################################################
11
-
12
- # # Load your CSV file
13
- # df = pd.read_csv("your_file.csv")
14
-
15
- # # Create dropdowns for exam name, year, and problem number
16
- # exam_names = df["exam name"].unique()
17
- # year_options = df["year"].unique()
18
- # problem_numbers = df["problem number"].unique()
19
-
20
- # exam_dropdown = gr.Dropdown(exam_names, label="Exam Name")
21
- # year_dropdown = gr.Dropdown(year_options, label="Year")
22
- # problem_dropdown = gr.Dropdown(problem_numbers, label="Problem Number")
23
-
24
- # # Define the functions for the three buttons
25
- # def solve_problem(exam, year, problem):
26
- # problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
27
- # prompt = f"Solve the following problem: {problem_statement}"
28
- # response = client.chat_completion(prompt, max_tokens=512, temperature=0.7, top_p=0.95)
29
- # return response.choices[0].text
30
-
31
- # def give_hints(exam, year, problem):
32
- # problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
33
- # prompt = f"Give hints for the following problem: {problem_statement}"
34
- # response = client.chat_completion(prompt, max_tokens=512, temperature=0.7, top_p=0.95)
35
- # return response.choices[0].text
36
-
37
- # def create_similar_problem(exam, year, problem):
38
- # problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
39
- # prompt = f"Create a similar problem to the following one: {problem_statement}"
40
- # response = client.chat_completion(prompt, max_tokens=512, temperature=0.7, top_p=0.95)
41
- # return response.choices[0].text
42
-
43
- # ################################################################
44
-
45
- # def respond(
46
- # message,
47
- # history: list[tuple[str, str]],
48
- # system_message,
49
- # max_tokens,
50
- # temperature,
51
- # top_p,
52
- # ):
53
- # messages = [{"role": "system", "content": system_message}]
54
-
55
- # for val in history:
56
- # if val[0]:
57
- # messages.append({"role": "user", "content": val[0]})
58
- # if val[1]:
59
- # messages.append({"role": "assistant", "content": val[1]})
60
-
61
- # messages.append({"role": "user", "content": message})
62
-
63
- # response = ""
64
-
65
- # for message in client.chat_completion(
66
- # messages,
67
- # max_tokens=max_tokens,
68
- # stream=True,
69
- # temperature=temperature,
70
- # top_p=top_p,
71
- # ):
72
- # token = message.choices[0].delta.content
73
-
74
- # response += token
75
- # yield response
76
-
77
- # """
78
- # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
79
- # """
80
- # demo = gr.ChatInterface(
81
- # respond,
82
- # additional_inputs=[
83
- # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
84
- # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
85
- # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
86
- # gr.Slider(
87
- # minimum=0.1,
88
- # maximum=1.0,
89
- # value=0.95,
90
- # step=0.05,
91
- # label="Top-p (nucleus sampling)",
92
- # ),
93
- # ],
94
- # )
95
-
96
- # ################################################################
97
-
98
- # # Create Gradio interface with Blocks context
99
- # with gr.Blocks() as dropdown_interface:
100
- # with gr.Column():
101
- # exam_dropdown.render()
102
- # year_dropdown.render()
103
- # problem_dropdown.render()
104
-
105
- # solve_button = gr.Button("Solve Problem")
106
- # hints_button = gr.Button("Give Hints")
107
- # similar_problem_button = gr.Button("Create Similar Problem")
108
-
109
- # output_text = gr.Textbox(label="Output")
110
-
111
- # solve_button.click(solve_problem, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text)
112
- # hints_button.click(give_hints, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text)
113
- # similar_problem_button.click(create_similar_problem, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text)
114
-
115
- # ################################################################
116
-
117
- # # Combine both interfaces into a tabbed layout
118
- # tabbed_interface = gr.TabbedInterface(
119
- # [dropdown_interface, demo],
120
- # ["Problem Solver", "Chat Interface"]
121
- # )
122
-
123
- # ################################################################
124
-
125
- # # Launch the app
126
- # if __name__ == "__main__":
127
- # tabbed_interface.launch()
128
-
129
-
130
- import gradio as gr
131
- from huggingface_hub import InferenceClient
132
-
133
- """
134
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
135
- """
136
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
137
-
138
-
139
- def respond(
140
- message,
141
- history: list[tuple[str, str]],
142
- system_message,
143
- max_tokens,
144
- temperature,
145
- top_p,
146
- ):
147
- messages = [{"role": "system", "content": system_message}]
148
-
149
- for val in history:
150
- if val[0]:
151
- messages.append({"role": "user", "content": val[0]})
152
- if val[1]:
153
- messages.append({"role": "assistant", "content": val[1]})
154
-
155
- messages.append({"role": "user", "content": message})
156
-
157
- response = ""
158
-
159
- for message in client.chat_completion(
160
- messages,
161
- max_tokens=max_tokens,
162
- stream=True,
163
- temperature=temperature,
164
- top_p=top_p,
165
- ):
166
- token = message.choices[0].delta.content
167
-
168
- response += token
169
- yield response
170
-
171
- """
172
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
173
- """
174
- demo = gr.ChatInterface(
175
- respond,
176
- additional_inputs=[
177
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
178
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
179
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
180
- gr.Slider(
181
- minimum=0.1,
182
- maximum=1.0,
183
- value=0.95,
184
- step=0.05,
185
- label="Top-p (nucleus sampling)",
186
- ),
187
- ],
188
- )
189
-
190
- if __name__ == "__main__":
191
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app123.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ from huggingface_hub import InferenceClient
4
+
5
+ """
6
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
+ """
8
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
+
10
+
11
+ def respond(
12
+ message,
13
+ history: list[tuple[str, str]],
14
+ system_message,
15
+ max_tokens,
16
+ temperature,
17
+ top_p,
18
+ ):
19
+ messages = [{"role": "system", "content": system_message}]
20
+
21
+ for val in history:
22
+ if val[0]:
23
+ messages.append({"role": "user", "content": val[0]})
24
+ if val[1]:
25
+ messages.append({"role": "assistant", "content": val[1]})
26
+
27
+ messages.append({"role": "user", "content": message})
28
+
29
+ response = ""
30
+
31
+ for message in client.chat_completion(
32
+ messages,
33
+ max_tokens=max_tokens,
34
+ stream=True,
35
+ temperature=temperature,
36
+ top_p=top_p,
37
+ ):
38
+ token = message.choices[0].delta.content
39
+
40
+ response += token
41
+ yield response
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
+
62
+ if __name__ == "__main__":
63
+ demo.launch()