|
"""Wrapper layer to apply every temporal slice of an input.""" |
|
|
|
|
|
import tensorflow.compat.v2 as tf |
|
|
|
from keras import backend |
|
from keras.engine.base_layer import Layer |
|
from keras.engine.input_spec import InputSpec |
|
from keras.layers.rnn.base_wrapper import Wrapper |
|
from keras.utils import generic_utils |
|
from keras.utils import layer_utils |
|
from keras.utils import tf_utils |
|
|
|
|
|
from tensorflow.python.util.tf_export import keras_export |
|
|
|
@keras_export("keras.layers.TimeDistributed") |
|
class TimeDistributed(Wrapper): |
|
"""This wrapper allows to apply a layer to every temporal slice of an input. |
|
|
|
Every input should be at least 3D, and the dimension of index one of the |
|
first input will be considered to be the temporal dimension. |
|
|
|
Consider a batch of 32 video samples, where each sample is a 128x128 RGB |
|
image with `channels_last` data format, across 10 timesteps. |
|
The batch input shape is `(32, 10, 128, 128, 3)`. |
|
|
|
You can then use `TimeDistributed` to apply the same `Conv2D` layer to each |
|
of the 10 timesteps, independently: |
|
|
|
>>> inputs = tf.keras.Input(shape=(10, 128, 128, 3)) |
|
>>> conv_2d_layer = tf.keras.layers.Conv2D(64, (3, 3)) |
|
>>> outputs = tf.keras.layers.TimeDistributed(conv_2d_layer)(inputs) |
|
>>> outputs.shape |
|
TensorShape([None, 10, 126, 126, 64]) |
|
|
|
Because `TimeDistributed` applies the same instance of `Conv2D` to each of |
|
the timestamps, the same set of weights are used at each timestamp. |
|
|
|
Args: |
|
layer: a `tf.keras.layers.Layer` instance. |
|
|
|
Call arguments: |
|
inputs: Input tensor of shape (batch, time, ...) or nested tensors, |
|
and each of which has shape (batch, time, ...). |
|
training: Python boolean indicating whether the layer should behave in |
|
training mode or in inference mode. This argument is passed to the |
|
wrapped layer (only if the layer supports this argument). |
|
mask: Binary tensor of shape `(samples, timesteps)` indicating whether |
|
a given timestep should be masked. This argument is passed to the |
|
wrapped layer (only if the layer supports this argument). |
|
|
|
Raises: |
|
ValueError: If not initialized with a `tf.keras.layers.Layer` instance. |
|
""" |
|
|
|
|
|
def __init__(self, layer, **kwargs): |
|
if not isinstance(layer, Layer): |
|
raise ValueError( |
|
"Please initialize `TimeDistributed` layer with a " |
|
f"`tf.keras.layers.Layer` instance. Received: {layer}" |
|
) |
|
super().__init__(layer, **kwargs) |
|
self.supports_masking = True |
|
|
|
|
|
|
|
|
|
self._always_use_reshape = layer_utils.is_builtin_layer( |
|
layer |
|
) and not getattr(layer, "stateful", False) |
|
|
|
|
|
def _get_shape_tuple(self, init_tuple, tensor, start_idx): |
|
"""Finds non-specific dimensions in the static shapes. |
|
|
|
The static shapes are replaced with the corresponding dynamic shapes of |
|
the tensor. |
|
Args: |
|
init_tuple: a tuple, the first part of the output shape |
|
tensor: the tensor from which to get the (static and dynamic) shapes |
|
as the last part of the output shape |
|
start_idx: int, which indicate the first dimension to take from |
|
the static shape of the tensor |
|
Returns: |
|
The new shape with the first part from `init_tuple` and the last part |
|
from or `tensor.shape`, where every `None` is replaced by the |
|
corresponding dimension from `tf.shape(tensor)`. |
|
""" |
|
|
|
int_shape = backend.int_shape(tensor)[start_idx:] |
|
if not any(s is None for s in int_shape): |
|
return init_tuple + int_shape |
|
shape = backend.shape(tensor) |
|
int_shape = list(int_shape) |
|
for i, s in enumerate(int_shape): |
|
if s is None: |
|
int_shape[i] = shape[start_idx + i] |
|
return init_tuple + tuple(int_shape) |
|
|
|
|
|
def _remove_timesteps(self, dims): |
|
dims = dims.as_list() |
|
return tf.TensorShape([dims[0]] + dims[2:]) |
|
|
|
|
|
def build(self, input_shape): |
|
input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False) |
|
input_dims = tf.nest.flatten( |
|
tf.nest.map_structure(lambda x: x.ndims, input_shape) |
|
) |
|
if any(dim < 3 for dim in input_dims): |
|
raise ValueError( |
|
"`TimeDistributed` Layer should be passed an `input_shape ` " |
|
f"with at least 3 dimensions, received: {input_shape}" |
|
) |
|
|
|
self.input_spec = tf.nest.map_structure( |
|
lambda x: InputSpec(shape=[None, None] + x.as_list()[2:]), |
|
input_shape, |
|
) |
|
child_input_shape = tf.nest.map_structure( |
|
self._remove_timesteps, input_shape |
|
) |
|
child_input_shape = tf_utils.convert_shapes(child_input_shape) |
|
super().build(tuple(child_input_shape)) |
|
self.built = True |
|
|
|
|
|
def compute_output_shape(self, input_shape): |
|
input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False) |
|
|
|
|
|
child_input_shape = tf.nest.map_structure( |
|
self._remove_timesteps, input_shape |
|
) |
|
child_output_shape = self.layer.compute_output_shape(child_input_shape) |
|
child_output_shape = tf_utils.convert_shapes( |
|
child_output_shape, to_tuples=False |
|
) |
|
timesteps = tf_utils.convert_shapes(input_shape) |
|
timesteps = tf.nest.flatten(timesteps)[1] |
|
|
|
|
|
def insert_timesteps(dims): |
|
dims = dims.as_list() |
|
return tf.TensorShape([dims[0], timesteps] + dims[1:]) |
|
|
|
|
|
return tf.nest.map_structure(insert_timesteps, child_output_shape) |
|
|
|
|
|
def call(self, inputs, training=None, mask=None): |
|
kwargs = {} |
|
if generic_utils.has_arg(self.layer.call, "training"): |
|
kwargs["training"] = training |
|
|
|
|
|
input_shape = tf.nest.map_structure( |
|
lambda x: tf.TensorShape(backend.int_shape(x)), inputs |
|
) |
|
batch_size = tf_utils.convert_shapes(input_shape) |
|
batch_size = tf.nest.flatten(batch_size)[0] |
|
if batch_size and not self._always_use_reshape: |
|
inputs, row_lengths = backend.convert_inputs_if_ragged(inputs) |
|
is_ragged_input = row_lengths is not None |
|
input_length = tf_utils.convert_shapes(input_shape) |
|
input_length = tf.nest.flatten(input_length)[1] |
|
|
|
|
|
|
|
def step(x, _): |
|
output = self.layer(x, **kwargs) |
|
return output, [] |
|
|
|
|
|
_, outputs, _ = backend.rnn( |
|
step, |
|
inputs, |
|
initial_states=[], |
|
input_length=row_lengths[0] |
|
if is_ragged_input |
|
else input_length, |
|
mask=mask, |
|
unroll=False, |
|
) |
|
|
|
|
|
y = tf.nest.map_structure( |
|
lambda output: backend.maybe_convert_to_ragged( |
|
is_ragged_input, output, row_lengths |
|
), |
|
outputs, |
|
) |
|
else: |
|
|
|
|
|
|
|
is_ragged_input = tf.nest.map_structure( |
|
lambda x: isinstance(x, tf.RaggedTensor), inputs |
|
) |
|
is_ragged_input = tf.nest.flatten(is_ragged_input) |
|
if all(is_ragged_input): |
|
input_values = tf.nest.map_structure(lambda x: x.values, inputs) |
|
input_row_lenghts = tf.nest.map_structure( |
|
lambda x: x.nested_row_lengths()[0], inputs |
|
) |
|
y = self.layer(input_values, **kwargs) |
|
y = tf.nest.map_structure( |
|
tf.RaggedTensor.from_row_lengths, y, input_row_lenghts |
|
) |
|
elif any(is_ragged_input): |
|
raise ValueError( |
|
"All inputs has to be either ragged or not, " |
|
f"but not mixed. Received: {inputs}" |
|
) |
|
else: |
|
input_length = tf_utils.convert_shapes(input_shape) |
|
input_length = tf.nest.flatten(input_length)[1] |
|
if not input_length: |
|
input_length = tf.nest.map_structure( |
|
lambda x: tf.shape(x)[1], inputs |
|
) |
|
input_length = generic_utils.to_list( |
|
tf.nest.flatten(input_length) |
|
)[0] |
|
|
|
|
|
inner_input_shape = tf.nest.map_structure( |
|
lambda x: self._get_shape_tuple((-1,), x, 2), inputs |
|
) |
|
|
|
|
|
inputs = tf.__internal__.nest.map_structure_up_to( |
|
inputs, tf.reshape, inputs, inner_input_shape |
|
) |
|
|
|
if ( |
|
generic_utils.has_arg(self.layer.call, "mask") |
|
and mask is not None |
|
): |
|
inner_mask_shape = self._get_shape_tuple((-1,), mask, 2) |
|
kwargs["mask"] = backend.reshape(mask, inner_mask_shape) |
|
|
|
|
|
y = self.layer(inputs, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
reshape_batch_size = batch_size if batch_size else -1 |
|
output_shape = tf.nest.map_structure( |
|
lambda tensor: self._get_shape_tuple( |
|
(reshape_batch_size, input_length), tensor, 1 |
|
), |
|
y, |
|
) |
|
y = tf.__internal__.nest.map_structure_up_to( |
|
y, tf.reshape, y, output_shape |
|
) |
|
|
|
|
|
return y |
|
|
|
|
|
def compute_mask(self, inputs, mask=None): |
|
"""Computes an output mask tensor for Embedding layer. |
|
|
|
This is based on the inputs, mask, and the inner layer. |
|
If batch size is specified: |
|
Simply return the input `mask`. (An rnn-based implementation with |
|
more than one rnn inputs is required but not supported in tf.keras yet.) |
|
Otherwise we call `compute_mask` of the inner layer at each time step. |
|
If the output mask at each time step is not `None`: |
|
(E.g., inner layer is Masking or RNN) |
|
Concatenate all of them and return the concatenation. |
|
If the output mask at each time step is `None` and the input mask is not |
|
`None`:(E.g., inner layer is Dense) |
|
Reduce the input_mask to 2 dimensions and return it. |
|
Otherwise (both the output mask and the input mask are `None`): |
|
(E.g., `mask` is not used at all) |
|
Return `None`. |
|
|
|
Args: |
|
inputs: Tensor with shape [batch size, timesteps, ...] indicating the |
|
input to TimeDistributed. If static shape information is available |
|
for "batch size", `mask` is returned unmodified. |
|
mask: Either None (indicating no masking) or a Tensor indicating the |
|
input mask for TimeDistributed. The shape can be static or dynamic. |
|
|
|
Returns: |
|
Either None (no masking), or a [batch size, timesteps, ...] Tensor |
|
with an output mask for the TimeDistributed layer with the shape |
|
beyond the second dimension being the value of the input mask shape(if |
|
the computed output mask is none), an output mask with the shape |
|
beyond the first dimension being the value of the mask shape(if mask |
|
is not None) or output mask with the shape beyond the first dimension |
|
being the value of the computed output shape. |
|
|
|
""" |
|
|
|
|
|
input_shape = tf.nest.map_structure( |
|
lambda x: tf.TensorShape(backend.int_shape(x)), inputs |
|
) |
|
input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False) |
|
batch_size = tf_utils.convert_shapes(input_shape) |
|
batch_size = tf.nest.flatten(batch_size)[0] |
|
is_ragged_input = tf.nest.map_structure( |
|
lambda x: isinstance(x, tf.RaggedTensor), inputs |
|
) |
|
is_ragged_input = generic_utils.to_list( |
|
tf.nest.flatten(is_ragged_input) |
|
) |
|
if batch_size and not self._always_use_reshape or any(is_ragged_input): |
|
|
|
|
|
|
|
return mask |
|
inner_mask = mask |
|
if inner_mask is not None: |
|
inner_mask_shape = self._get_shape_tuple((-1,), mask, 2) |
|
inner_mask = backend.reshape(inner_mask, inner_mask_shape) |
|
inner_input_shape = tf.nest.map_structure( |
|
lambda tensor: self._get_shape_tuple((-1,), tensor, 2), inputs |
|
) |
|
inner_inputs = tf.__internal__.nest.map_structure_up_to( |
|
inputs, tf.reshape, inputs, inner_input_shape |
|
) |
|
output_mask = self.layer.compute_mask(inner_inputs, inner_mask) |
|
if output_mask is None: |
|
if mask is None: |
|
return None |
|
|
|
|
|
output_mask = mask |
|
for _ in range(2, len(backend.int_shape(mask))): |
|
output_mask = backend.any(output_mask, axis=-1) |
|
else: |
|
|
|
input_length = tf_utils.convert_shapes(input_shape) |
|
input_length = tf.nest.flatten(input_length)[1] |
|
if not input_length: |
|
input_length = tf.nest.map_structure( |
|
lambda x: backend.shape(x)[1], inputs |
|
) |
|
input_length = tf.nest.flatten(input_length)[0] |
|
reshape_batch_size = batch_size if batch_size else -1 |
|
output_mask_shape = self._get_shape_tuple( |
|
(reshape_batch_size, input_length), output_mask, 1 |
|
) |
|
output_mask = backend.reshape(output_mask, output_mask_shape) |
|
return output_mask |