Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import pandas as pd | |
| import re | |
| import os | |
| import cloudpickle | |
| from transformers import (DebertaTokenizerFast, | |
| TFAutoModelForTokenClassification, | |
| BartTokenizerFast, | |
| TFAutoModelForSeq2SeqLM) | |
| import tensorflow as tf | |
| import spacy | |
| import streamlit as st | |
| from scraper import scrape_text | |
| os.environ['TF_USE_LEGACY_KERAS'] = "1" | |
| class NERLabelEncoder: | |
| ''' | |
| Label Encoder to encode and decode the entity labels | |
| ''' | |
| def __init__(self): | |
| self.label_mapping = {'O': 0, | |
| 'B-geo': 1, | |
| 'I-geo': 2, | |
| 'B-gpe': 3, | |
| 'I-gpe': 4, | |
| 'B-per': 5, | |
| 'I-per': 6, | |
| 'B-org': 7, | |
| 'I-org': 8, | |
| 'B-tim': 9, | |
| 'I-tim': 10, | |
| 'B-art': 11, | |
| 'I-art': 12, | |
| 'B-nat': 13, | |
| 'I-nat': 14, | |
| 'B-eve': 15, | |
| 'I-eve': 16, | |
| '[CLS]': -100, | |
| '[SEP]': -100} | |
| self.inverse_label_mapping = {} | |
| def fit(self): | |
| self.inverse_label_mapping = {value: key for key, value in self.label_mapping.items()} | |
| return self | |
| def transform(self, x: pd.Series): | |
| x = x.map(self.label_mapping) | |
| return x | |
| def inverse_transform(self, x: pd.Series): | |
| x = x.map(self.inverse_label_mapping) | |
| return x | |
| ############ NER MODEL & VARS INITIALIZATION START #################### | |
| NER_CHECKPOINT = "microsoft/deberta-base" | |
| NER_N_TOKENS = 50 | |
| NER_N_LABELS = 18 | |
| NER_COLOR_MAP = {'GEO': '#DFFF00', 'GPE': '#FFBF00', 'PER': '#9FE2BF', | |
| 'ORG': '#40E0D0', 'TIM': '#CCCCFF', 'ART': '#FFC0CB', 'NAT': '#FFE4B5', 'EVE': '#DCDCDC'} | |
| def load_ner_models(): | |
| ner_model = TFAutoModelForTokenClassification.from_pretrained(NER_CHECKPOINT, num_labels=NER_N_LABELS, attention_probs_dropout_prob=0.4, hidden_dropout_prob=0.4) | |
| ner_model.load_weights(os.path.join("models", "general_ner_deberta_weights.h5"), by_name=True) | |
| ner_label_encoder = NERLabelEncoder() | |
| ner_label_encoder.fit() | |
| ner_tokenizer = DebertaTokenizerFast.from_pretrained(NER_CHECKPOINT, add_prefix_space=True) | |
| nlp = spacy.load(os.path.join('.', 'en_core_web_sm-3.6.0')) | |
| print('Loaded NER models') | |
| return ner_model, ner_label_encoder, ner_tokenizer, nlp | |
| ner_model, ner_label_encoder, ner_tokenizer, nlp = load_ner_models() | |
| ############ NER MODEL & VARS INITIALIZATION END #################### | |
| ############ NER LOGIC START #################### | |
| def softmax(x): | |
| return tf.exp(x) / tf.math.reduce_sum(tf.exp(x)) | |
| def ner_process_output(res): | |
| ''' | |
| Function to concatenate sub-word tokens, labels and | |
| compute mean prediction probability of tokens | |
| ''' | |
| d = {} | |
| result = [] | |
| pred_prob = [] | |
| res.append(['-', 'B-b', 0]) | |
| for n, i in enumerate(res): | |
| try: | |
| split = i[1].split('-') | |
| token = i[0] | |
| token_prob = i[2] | |
| prefix, suffix = split | |
| if prefix == 'B': | |
| if len(d) != 0: | |
| result.append([(re.sub(r"[^\x00-\x7F]+", '', token.replace("Δ ", " ").strip()), label, np.mean(pred_prob)) | |
| for label, token in d.items()][0]) | |
| d = {} | |
| pred_prob = [] | |
| pred_prob.append(token_prob) | |
| d[suffix] = token | |
| else: | |
| d[suffix] = d[suffix] + token | |
| pred_prob.append(token_prob) | |
| except: | |
| continue | |
| return result | |
| def ner_inference(txt): | |
| ''' | |
| Function that returns model prediction and prediction probabitliy | |
| ''' | |
| test_data = [txt] | |
| # tokenizer = DebertaTokenizerFast.from_pretrained(NER_CHECKPOINT, add_prefix_space=True) | |
| tokens = ner_tokenizer.tokenize(txt) | |
| tokenized_data = ner_tokenizer(test_data, is_split_into_words=True, max_length=NER_N_TOKENS, | |
| truncation=True, padding="max_length") | |
| token_idx_to_consider = tokenized_data.word_ids() | |
| token_idx_to_consider = [i for i in range(len(token_idx_to_consider)) if token_idx_to_consider[i] is not None] | |
| input_ = [tokenized_data['input_ids'], tokenized_data['attention_mask']] | |
| pred_logits = ner_model.predict(input_, verbose=0).logits[0] | |
| pred_prob = tf.map_fn(softmax, pred_logits) | |
| pred_idx = tf.argmax(pred_prob, axis=-1).numpy() | |
| pred_idx = pred_idx[token_idx_to_consider] | |
| pred_prob = tf.math.reduce_max(pred_prob, axis=-1).numpy() | |
| pred_prob = np.round(pred_prob[token_idx_to_consider], 3) | |
| pred_labels = ner_label_encoder.inverse_transform(pd.Series(pred_idx)) | |
| result = [[token, label, prob] for token, label, | |
| prob in zip(tokens, pred_labels, pred_prob) if label.find('-') >= 0] | |
| output = ner_process_output(result) | |
| return output | |
| def ner_inference_long_text(txt): | |
| entities = [] | |
| doc = nlp(txt) | |
| n_sents = len([_ for _ in doc.sents]) | |
| n = 0 | |
| progress_bar = st.progress(0, text=f'Processed 0 / {n_sents} sentences') | |
| for sent in doc.sents: | |
| entities.extend(ner_inference(sent.text)) | |
| n += 1 | |
| progress_bar.progress(n / n_sents, text=f'Processed {n} / {n_sents} sentences') | |
| # progress_bar.empty() | |
| return entities | |
| def get_ner_text(article_txt, ner_result): | |
| res_txt = '' | |
| start = 0 | |
| prev_start = 0 | |
| for i in ner_result: | |
| try: | |
| span = next(re.finditer(fr'{i[0]}', article_txt)).span() | |
| start = span[0] | |
| end = span[1] | |
| res_txt += article_txt[prev_start:start] | |
| repl_str = f'''<span style="background-color:{NER_COLOR_MAP[i[1]]}; border-radius: 3px">{article_txt[start:end].strip()} | |
| <span style="font-size:10px; font-weight:bold; display:inline-block; vertical-align: middle;"> | |
| {i[1]} ({str(np.round(i[2], 3))})</span></span>''' | |
| res_txt += article_txt[start:end].replace(article_txt[start:end], repl_str) | |
| prev_start = 0 | |
| article_txt = article_txt[end:] | |
| except: | |
| continue | |
| res_txt += article_txt | |
| return res_txt | |
| ############ NER LOGIC END #################### | |
| ############ SUMMARIZATION MODEL & VARS INITIALIZATION START #################### | |
| SUMM_CHECKPOINT = "facebook/bart-base" | |
| SUMM_INPUT_N_TOKENS = 400 | |
| SUMM_TARGET_N_TOKENS = 300 | |
| def load_summarizer_models(): | |
| summ_tokenizer = BartTokenizerFast.from_pretrained(SUMM_CHECKPOINT) | |
| summ_model = TFAutoModelForSeq2SeqLM.from_pretrained(SUMM_CHECKPOINT) | |
| summ_model.load_weights(os.path.join("models", "bart_en_summarizer.h5"), by_name=True) | |
| print('Loaded summarizer models') | |
| return summ_tokenizer, summ_model | |
| summ_tokenizer, summ_model = load_summarizer_models() | |
| def summ_preprocess(txt): | |
| txt = re.sub(r'^By \. [\w\s]+ \. ', ' ', txt) # By . Ellie Zolfagharifard . | |
| txt = re.sub(r'\d{1,2}\:\d\d [a-zA-Z]{3}', ' ', txt) # 10:30 EST | |
| txt = re.sub(r'\d{1,2} [a-zA-Z]+ \d{4}', ' ', txt) # 10 November 1990 | |
| txt = txt.replace('PUBLISHED:', ' ') | |
| txt = txt.replace('UPDATED', ' ') | |
| txt = re.sub(r' [\,\.\:\'\;\|] ', ' ', txt) # remove puncts with spaces before and after | |
| txt = txt.replace(' : ', ' ') | |
| txt = txt.replace('(CNN)', ' ') | |
| txt = txt.replace('--', ' ') | |
| txt = re.sub(r'^\s*[\,\.\:\'\;\|]', ' ', txt) # remove puncts at beginning of sent | |
| txt = re.sub(r' [\,\.\:\'\;\|] ', ' ', txt) # remove puncts with spaces before and after | |
| txt = re.sub(r'\n+',' ', txt) | |
| txt = " ".join(txt.split()) | |
| return txt | |
| def summ_inference_tokenize(input_: list, n_tokens: int): | |
| tokenized_data = summ_tokenizer(text=input_, max_length=SUMM_TARGET_N_TOKENS, truncation=True, padding="max_length", return_tensors="tf") | |
| return summ_tokenizer, tokenized_data | |
| def summ_inference(txt: str): | |
| txt = summ_preprocess(txt) | |
| test_data = [txt] | |
| inference_tokenizer, tokenized_data = summ_inference_tokenize(input_=test_data, n_tokens=SUMM_INPUT_N_TOKENS) | |
| pred = summ_model.generate(**tokenized_data, max_new_tokens=SUMM_TARGET_N_TOKENS) | |
| result = inference_tokenizer.decode(pred[0]) | |
| result = re.sub("<.*?>", "", result).strip() | |
| return result | |
| ############ SUMMARIZATION MODEL & VARS INITIALIZATION END #################### | |
| ############## ENTRY POINT START ####################### | |
| def main(): | |
| st.markdown('''<h3>News Summarizer and NER</h3> | |
| <p><a href="https://huggingface.co/spaces/ksvmuralidhar/news_summarizer_ner/blob/main/README.md#new-summarization-and-ner" target="_blank">README</a></p> | |
| ''', unsafe_allow_html=True) | |
| input_type = st.radio('Select an option:', ['Paste news URL', 'Paste news text'], | |
| horizontal=True) | |
| scrape_error = None | |
| summary_error = None | |
| ner_error = None | |
| summ_result = None | |
| ner_result = None | |
| ner_df = None | |
| article_txt = None | |
| if input_type == 'Paste news URL': | |
| article_url = st.text_input("Paste the URL of a news article", "") | |
| if (st.button("Submit")) or (article_url): | |
| with st.status("Processing...", expanded=True) as status: | |
| status.empty() | |
| # Scraping data Start | |
| try: | |
| st.info("Scraping data from the URL.", icon="βΉοΈ") | |
| article_txt = scrape_text(article_url) | |
| st.success("Successfully scraped the data.", icon="β ") | |
| except Exception as e: | |
| article_txt = None | |
| scrape_error = str(e) | |
| # Scraping data End | |
| if article_txt is not None: | |
| article_txt = re.sub(r'\n+',' ', article_txt) | |
| # Generating summary start | |
| try: | |
| st.info("Generating the summary.", icon="βΉοΈ") | |
| summ_result = summ_inference(article_txt) | |
| except Exception as e: | |
| summ_result = None | |
| summary_error = str(e) | |
| if summ_result is not None: | |
| st.success("Successfully generated the summary.", icon="β ") | |
| else: | |
| st.error("Encountered an error while generating the summary.", icon="π¨") | |
| # Generating summary end | |
| # NER start | |
| try: | |
| st.info("Recognizing the entites.", icon="βΉοΈ") | |
| ner_result = [[ent, label.upper(), np.round(prob, 3)] | |
| for ent, label, prob in ner_inference_long_text(article_txt)] | |
| ner_df = pd.DataFrame(ner_result, columns=['entity', 'label', 'confidence']) | |
| ner_result = get_ner_text(article_txt, ner_result).replace('$', '\$') | |
| except Exception as e: | |
| ner_result = None | |
| ner_error = str(e) | |
| if ner_result is not None: | |
| st.success("Successfully recognized the entites.", icon="β ") | |
| else: | |
| st.error("Encountered an error while recognizing the entites.", icon="π¨") | |
| # NER end | |
| else: | |
| st.error("Encountered an error while scraping the data.", icon="π¨") | |
| if (scrape_error is None) and (summary_error is None) and (ner_error is None): | |
| status.update(label="Done", state="complete", expanded=False) | |
| else: | |
| status.update(label="Error", state="error", expanded=False) | |
| if scrape_error is not None: | |
| st.error(f"Scrape Error: \n{scrape_error}", icon="π¨") | |
| else: | |
| if summary_error is not None: | |
| st.error(f"Summary Error: \n{summary_error}", icon="π¨") | |
| else: | |
| st.markdown(f"<h4>SUMMARY:</h4>{summ_result}", unsafe_allow_html=True) | |
| if ner_error is not None: | |
| st.error(f"NER Error \n{ner_error}", icon="π¨") | |
| else: | |
| st.markdown(f"<h4>ENTITIES:</h4>{ner_result}", unsafe_allow_html=True) | |
| # st.dataframe(ner_df, use_container_width=True) | |
| st.markdown(f"<h4>SCRAPED TEXT:</h4>{article_txt}", unsafe_allow_html=True) | |
| else: | |
| article_txt = st.text_area("Paste the text of a news article", "", height=150) | |
| if (st.button("Submit")) or (article_txt): | |
| with st.status("Processing...", expanded=True) as status: | |
| article_txt = re.sub(r'\n+',' ', article_txt) | |
| # Generating summary start | |
| try: | |
| st.info("Generating the summary.", icon="βΉοΈ") | |
| summ_result = summ_inference(article_txt) | |
| except Exception as e: | |
| summ_result = None | |
| summary_error = str(e) | |
| if summ_result is not None: | |
| st.success("Successfully generated the summary.", icon="β ") | |
| else: | |
| st.error("Encountered an error while generating the summary.", icon="π¨") | |
| # Generating summary end | |
| # NER start | |
| try: | |
| st.info("Recognizing the entites.", icon="βΉοΈ") | |
| ner_result = [[ent, label.upper(), np.round(prob, 3)] | |
| for ent, label, prob in ner_inference_long_text(article_txt)] | |
| ner_df = pd.DataFrame(ner_result, columns=['entity', 'label', 'confidence']) | |
| ner_result = get_ner_text(article_txt, ner_result).replace('$', '\$') | |
| except Exception as e: | |
| ner_result = None | |
| ner_error = str(e) | |
| if ner_result is not None: | |
| st.success("Successfully recognized the entites.", icon="β ") | |
| else: | |
| st.error("Encountered an error while recognizing the entites.", icon="π¨") | |
| # NER end | |
| if (summary_error is None) and (ner_error is None): | |
| status.update(label="Done", state="complete", expanded=False) | |
| else: | |
| status.update(label="Error", state="error", expanded=False) | |
| if summary_error is not None: | |
| st.error(f"Summary Error: \n{summary_error}", icon="π¨") | |
| else: | |
| st.markdown(f"<h4>SUMMARY:</h4>{summ_result}", unsafe_allow_html=True) | |
| if ner_error is not None: | |
| st.error(f"NER Error \n{ner_error}", icon="π¨") | |
| else: | |
| st.markdown(f"<h4>ENTITIES:</h4>{ner_result}", unsafe_allow_html=True) | |
| # st.dataframe(ner_df, use_container_width=True) | |
| ############## ENTRY POINT END ####################### | |
| if __name__ == "__main__": | |
| main() |