Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,24 +7,14 @@ import tempfile
|
|
| 7 |
import os
|
| 8 |
import gradio as gr
|
| 9 |
import time
|
| 10 |
-
import
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
status = {
|
| 14 |
-
"logs": "",
|
| 15 |
-
"progress": 0, # from 0 to 100
|
| 16 |
-
"finished": False
|
| 17 |
-
}
|
| 18 |
-
result = {
|
| 19 |
-
"original_video": None,
|
| 20 |
-
"stabilized_video": None
|
| 21 |
-
}
|
| 22 |
-
|
| 23 |
-
# Set up device for torch.
|
| 24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 25 |
print(f"[INFO] Using device: {device}")
|
| 26 |
|
| 27 |
-
# Try to load the RAFT model
|
|
|
|
| 28 |
try:
|
| 29 |
print("[INFO] Attempting to load RAFT model from torch.hub...")
|
| 30 |
raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
|
|
@@ -36,70 +26,76 @@ except Exception as e:
|
|
| 36 |
print("[INFO] Falling back to OpenCV Farneback optical flow.")
|
| 37 |
raft_model = None
|
| 38 |
|
| 39 |
-
def
|
| 40 |
-
"""Append a log message to the global status and print it."""
|
| 41 |
-
global status
|
| 42 |
-
status["logs"] += msg + "\n"
|
| 43 |
-
print(msg)
|
| 44 |
-
|
| 45 |
-
def background_process(video_file, zoom):
|
| 46 |
"""
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
"""
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
# === CSV Generation Phase ===
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
cap = cv2.VideoCapture(video_file)
|
| 62 |
if not cap.isOpened():
|
| 63 |
-
|
| 64 |
-
status["finished"] = True
|
| 65 |
return
|
| 66 |
-
|
| 67 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 68 |
-
|
|
|
|
|
|
|
| 69 |
csv_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv').name
|
| 70 |
with open(csv_file, 'w', newline='') as csvfile:
|
| 71 |
fieldnames = ['frame', 'mag', 'ang', 'zoom']
|
| 72 |
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
| 73 |
writer.writeheader()
|
| 74 |
-
|
| 75 |
ret, first_frame = cap.read()
|
| 76 |
if not ret:
|
| 77 |
-
|
| 78 |
-
status["finished"] = True
|
| 79 |
-
cap.release()
|
| 80 |
return
|
| 81 |
-
|
| 82 |
if raft_model is not None:
|
| 83 |
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
| 84 |
prev_tensor = torch.from_numpy(first_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
| 85 |
prev_tensor = prev_tensor.to(device)
|
| 86 |
-
|
| 87 |
else:
|
| 88 |
prev_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
|
| 89 |
-
|
| 90 |
-
|
| 91 |
frame_idx = 1
|
|
|
|
| 92 |
while True:
|
| 93 |
ret, frame = cap.read()
|
| 94 |
if not ret:
|
| 95 |
break
|
| 96 |
-
|
| 97 |
if raft_model is not None:
|
| 98 |
curr_frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 99 |
curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
| 100 |
curr_tensor = curr_tensor.to(device)
|
| 101 |
with torch.no_grad():
|
| 102 |
-
|
| 103 |
flow = flow_up[0].permute(1, 2, 0).cpu().numpy()
|
| 104 |
prev_tensor = curr_tensor.clone()
|
| 105 |
else:
|
|
@@ -108,12 +104,12 @@ def background_process(video_file, zoom):
|
|
| 108 |
pyr_scale=0.5, levels=3, winsize=15,
|
| 109 |
iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
|
| 110 |
prev_gray = curr_gray
|
| 111 |
-
|
| 112 |
-
# Compute median magnitude and angle
|
| 113 |
-
mag, ang = cv2.cartToPolar(flow[...,
|
| 114 |
median_mag = np.median(mag)
|
| 115 |
median_ang = np.median(ang)
|
| 116 |
-
# Compute zoom factor: fraction of pixels moving away from
|
| 117 |
h, w = flow.shape[:2]
|
| 118 |
center_x, center_y = w / 2, h / 2
|
| 119 |
x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
|
|
@@ -121,25 +117,28 @@ def background_process(video_file, zoom):
|
|
| 121 |
y_offset = y_coords - center_y
|
| 122 |
dot = flow[..., 0] * x_offset + flow[..., 1] * y_offset
|
| 123 |
zoom_factor = np.count_nonzero(dot > 0) / (w * h)
|
|
|
|
| 124 |
writer.writerow({
|
| 125 |
'frame': frame_idx,
|
| 126 |
'mag': median_mag,
|
| 127 |
'ang': median_ang,
|
| 128 |
'zoom': zoom_factor
|
| 129 |
})
|
| 130 |
-
|
| 131 |
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
| 132 |
-
progress_csv = (frame_idx / total_frames) * 50 # CSV phase
|
| 133 |
-
|
| 134 |
-
|
| 135 |
frame_idx += 1
|
| 136 |
cap.release()
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
# === Stabilization Phase ===
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
| 143 |
motion_data = {}
|
| 144 |
cumulative_dx = 0.0
|
| 145 |
cumulative_dy = 0.0
|
|
@@ -155,10 +154,10 @@ def background_process(video_file, zoom):
|
|
| 155 |
cumulative_dx += dx
|
| 156 |
cumulative_dy += dy
|
| 157 |
motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
# Re-open video for stabilization
|
| 162 |
cap = cv2.VideoCapture(video_file)
|
| 163 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 164 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
@@ -168,7 +167,7 @@ def background_process(video_file, zoom):
|
|
| 168 |
temp_file.close()
|
| 169 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 170 |
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
|
| 171 |
-
|
| 172 |
frame_idx = 1
|
| 173 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 174 |
while True:
|
|
@@ -181,59 +180,45 @@ def background_process(video_file, zoom):
|
|
| 181 |
start_x = max((zoomed_w - width) // 2, 0)
|
| 182 |
start_y = max((zoomed_h - height) // 2, 0)
|
| 183 |
frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
|
|
|
|
| 184 |
dx, dy = motion_data.get(frame_idx, (0, 0))
|
| 185 |
-
transform = np.array([[1, 0, dx],
|
| 186 |
-
[0, 1, dy]], dtype=np.float32)
|
| 187 |
stabilized_frame = cv2.warpAffine(frame, transform, (width, height))
|
| 188 |
out.write(stabilized_frame)
|
|
|
|
| 189 |
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
| 190 |
-
progress_stab = 50 + (frame_idx / total_frames) * 50 # Stabilization phase
|
| 191 |
-
|
| 192 |
-
|
| 193 |
frame_idx += 1
|
| 194 |
cap.release()
|
| 195 |
out.release()
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
status["finished"] = True
|
| 199 |
-
result["original_video"] = video_file
|
| 200 |
-
result["stabilized_video"] = output_file
|
| 201 |
-
|
| 202 |
-
def start_processing(video_file, zoom):
|
| 203 |
-
"""Starts background processing in a new thread."""
|
| 204 |
-
thread = threading.Thread(target=background_process, args=(video_file, zoom), daemon=True)
|
| 205 |
-
thread.start()
|
| 206 |
-
return "[INFO] Processing started..."
|
| 207 |
|
| 208 |
-
|
| 209 |
-
"""
|
| 210 |
-
Returns the current processing status:
|
| 211 |
-
- original_video: path if finished (else None)
|
| 212 |
-
- stabilized_video: path if finished (else None)
|
| 213 |
-
- logs: current logs string
|
| 214 |
-
- progress: current progress value (0 to 100)
|
| 215 |
-
"""
|
| 216 |
-
return result["original_video"], result["stabilized_video"], status["logs"], status["progress"]
|
| 217 |
-
|
| 218 |
-
# Build the Gradio UI.
|
| 219 |
with gr.Blocks() as demo:
|
| 220 |
gr.Markdown("# AI-Powered Video Stabilization")
|
| 221 |
-
gr.Markdown("Upload a video and select a zoom factor.
|
| 222 |
-
|
| 223 |
with gr.Row():
|
| 224 |
with gr.Column():
|
| 225 |
video_input = gr.Video(label="Input Video")
|
| 226 |
zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor")
|
| 227 |
-
|
| 228 |
with gr.Column():
|
| 229 |
original_video = gr.Video(label="Original Video")
|
| 230 |
stabilized_video = gr.Video(label="Stabilized Video")
|
| 231 |
logs_output = gr.Textbox(label="Logs", lines=15)
|
| 232 |
progress_bar = gr.Slider(label="Progress", minimum=0, maximum=100, value=0, interactive=False)
|
| 233 |
-
|
| 234 |
-
#
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import os
|
| 8 |
import gradio as gr
|
| 9 |
import time
|
| 10 |
+
import io
|
| 11 |
|
| 12 |
+
# Set up device for torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
print(f"[INFO] Using device: {device}")
|
| 15 |
|
| 16 |
+
# Try to load the RAFT model from torch.hub.
|
| 17 |
+
# If it fails, fall back to OpenCV's Farneback optical flow.
|
| 18 |
try:
|
| 19 |
print("[INFO] Attempting to load RAFT model from torch.hub...")
|
| 20 |
raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
|
|
|
|
| 26 |
print("[INFO] Falling back to OpenCV Farneback optical flow.")
|
| 27 |
raft_model = None
|
| 28 |
|
| 29 |
+
def process_video_ai(video_file, zoom):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
"""
|
| 31 |
+
Generator function for Gradio:
|
| 32 |
+
- Generates motion data (CSV) from the input video using an AI model (RAFT if available, else Farneback)
|
| 33 |
+
- Stabilizes the video using the generated motion data.
|
| 34 |
+
|
| 35 |
+
Yields:
|
| 36 |
+
A tuple of (original_video, stabilized_video, logs, progress)
|
| 37 |
+
During processing, original_video and stabilized_video are None.
|
| 38 |
+
The final yield returns the video file paths along with final logs and progress=100.
|
| 39 |
"""
|
| 40 |
+
logs = []
|
| 41 |
+
def add_log(msg):
|
| 42 |
+
logs.append(msg)
|
| 43 |
+
return "\n".join(logs)
|
| 44 |
+
|
| 45 |
+
# Check and extract the file path
|
| 46 |
+
if isinstance(video_file, dict):
|
| 47 |
+
video_file = video_file.get("name", None)
|
| 48 |
+
if video_file is None:
|
| 49 |
+
yield (None, None, "[ERROR] Please upload a video file.", 0)
|
| 50 |
+
return
|
| 51 |
+
|
| 52 |
+
add_log("[INFO] Starting AI-powered video processing...")
|
| 53 |
+
yield (None, None, add_log("Starting processing..."), 0)
|
| 54 |
+
|
| 55 |
# === CSV Generation Phase ===
|
| 56 |
+
add_log("[INFO] Starting motion CSV generation...")
|
| 57 |
+
yield (None, None, add_log("Starting CSV generation..."), 0)
|
| 58 |
+
|
| 59 |
cap = cv2.VideoCapture(video_file)
|
| 60 |
if not cap.isOpened():
|
| 61 |
+
yield (None, None, add_log("[ERROR] Could not open video file for CSV generation."), 0)
|
|
|
|
| 62 |
return
|
|
|
|
| 63 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 64 |
+
add_log(f"[INFO] Total frames in video: {total_frames}")
|
| 65 |
+
|
| 66 |
+
# Create temporary CSV file
|
| 67 |
csv_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv').name
|
| 68 |
with open(csv_file, 'w', newline='') as csvfile:
|
| 69 |
fieldnames = ['frame', 'mag', 'ang', 'zoom']
|
| 70 |
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
| 71 |
writer.writeheader()
|
| 72 |
+
|
| 73 |
ret, first_frame = cap.read()
|
| 74 |
if not ret:
|
| 75 |
+
yield (None, None, add_log("[ERROR] Cannot read first frame from video."), 0)
|
|
|
|
|
|
|
| 76 |
return
|
| 77 |
+
|
| 78 |
if raft_model is not None:
|
| 79 |
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
| 80 |
prev_tensor = torch.from_numpy(first_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
| 81 |
prev_tensor = prev_tensor.to(device)
|
| 82 |
+
add_log("[INFO] Using RAFT model for optical flow computation.")
|
| 83 |
else:
|
| 84 |
prev_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
|
| 85 |
+
add_log("[INFO] Using Farneback optical flow for computation.")
|
| 86 |
+
|
| 87 |
frame_idx = 1
|
| 88 |
+
# Process each frame for CSV generation
|
| 89 |
while True:
|
| 90 |
ret, frame = cap.read()
|
| 91 |
if not ret:
|
| 92 |
break
|
|
|
|
| 93 |
if raft_model is not None:
|
| 94 |
curr_frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 95 |
curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
| 96 |
curr_tensor = curr_tensor.to(device)
|
| 97 |
with torch.no_grad():
|
| 98 |
+
flow_low, flow_up = raft_model(prev_tensor, curr_tensor, iters=20, test_mode=True)
|
| 99 |
flow = flow_up[0].permute(1, 2, 0).cpu().numpy()
|
| 100 |
prev_tensor = curr_tensor.clone()
|
| 101 |
else:
|
|
|
|
| 104 |
pyr_scale=0.5, levels=3, winsize=15,
|
| 105 |
iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
|
| 106 |
prev_gray = curr_gray
|
| 107 |
+
|
| 108 |
+
# Compute median magnitude and angle
|
| 109 |
+
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1], angleInDegrees=True)
|
| 110 |
median_mag = np.median(mag)
|
| 111 |
median_ang = np.median(ang)
|
| 112 |
+
# Compute zoom factor: fraction of pixels moving away from center
|
| 113 |
h, w = flow.shape[:2]
|
| 114 |
center_x, center_y = w / 2, h / 2
|
| 115 |
x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
|
|
|
|
| 117 |
y_offset = y_coords - center_y
|
| 118 |
dot = flow[..., 0] * x_offset + flow[..., 1] * y_offset
|
| 119 |
zoom_factor = np.count_nonzero(dot > 0) / (w * h)
|
| 120 |
+
|
| 121 |
writer.writerow({
|
| 122 |
'frame': frame_idx,
|
| 123 |
'mag': median_mag,
|
| 124 |
'ang': median_ang,
|
| 125 |
'zoom': zoom_factor
|
| 126 |
})
|
| 127 |
+
|
| 128 |
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
| 129 |
+
progress_csv = (frame_idx / total_frames) * 50 # CSV phase is 0-50%
|
| 130 |
+
add_log(f"[INFO] CSV: Processed frame {frame_idx}/{total_frames}")
|
| 131 |
+
yield (None, None, add_log(""), progress_csv)
|
| 132 |
frame_idx += 1
|
| 133 |
cap.release()
|
| 134 |
+
add_log("[INFO] CSV generation complete.")
|
| 135 |
+
yield (None, None, add_log(""), 50)
|
| 136 |
+
|
| 137 |
# === Stabilization Phase ===
|
| 138 |
+
add_log("[INFO] Starting video stabilization...")
|
| 139 |
+
yield (None, None, add_log("Starting stabilization..."), 51)
|
| 140 |
+
|
| 141 |
+
# Read the CSV and compute cumulative motion data
|
| 142 |
motion_data = {}
|
| 143 |
cumulative_dx = 0.0
|
| 144 |
cumulative_dy = 0.0
|
|
|
|
| 154 |
cumulative_dx += dx
|
| 155 |
cumulative_dy += dy
|
| 156 |
motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
|
| 157 |
+
add_log("[INFO] Motion CSV read complete.")
|
| 158 |
+
yield (None, None, add_log(""), 55)
|
| 159 |
+
|
| 160 |
+
# Re-open video for stabilization
|
| 161 |
cap = cv2.VideoCapture(video_file)
|
| 162 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 163 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
|
| 167 |
temp_file.close()
|
| 168 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 169 |
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
|
| 170 |
+
|
| 171 |
frame_idx = 1
|
| 172 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 173 |
while True:
|
|
|
|
| 180 |
start_x = max((zoomed_w - width) // 2, 0)
|
| 181 |
start_y = max((zoomed_h - height) // 2, 0)
|
| 182 |
frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
|
| 183 |
+
|
| 184 |
dx, dy = motion_data.get(frame_idx, (0, 0))
|
| 185 |
+
transform = np.array([[1, 0, dx], [0, 1, dy]], dtype=np.float32)
|
|
|
|
| 186 |
stabilized_frame = cv2.warpAffine(frame, transform, (width, height))
|
| 187 |
out.write(stabilized_frame)
|
| 188 |
+
|
| 189 |
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
| 190 |
+
progress_stab = 50 + (frame_idx / total_frames) * 50 # Stabilization phase is 50-100%
|
| 191 |
+
add_log(f"[INFO] Stabilization: Processed frame {frame_idx}/{total_frames}")
|
| 192 |
+
yield (None, None, add_log(""), progress_stab)
|
| 193 |
frame_idx += 1
|
| 194 |
cap.release()
|
| 195 |
out.release()
|
| 196 |
+
add_log("[INFO] Stabilization complete.")
|
| 197 |
+
yield (video_file, output_file, add_log(""), 100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
+
# Build the Gradio UI with streaming enabled.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
with gr.Blocks() as demo:
|
| 201 |
gr.Markdown("# AI-Powered Video Stabilization")
|
| 202 |
+
gr.Markdown("Upload a video and select a zoom factor. The system will generate motion data using an AI model (RAFT if available, else Farneback) and then stabilize the video. Logs and progress will update during processing.")
|
| 203 |
+
|
| 204 |
with gr.Row():
|
| 205 |
with gr.Column():
|
| 206 |
video_input = gr.Video(label="Input Video")
|
| 207 |
zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor")
|
| 208 |
+
process_button = gr.Button("Process Video")
|
| 209 |
with gr.Column():
|
| 210 |
original_video = gr.Video(label="Original Video")
|
| 211 |
stabilized_video = gr.Video(label="Stabilized Video")
|
| 212 |
logs_output = gr.Textbox(label="Logs", lines=15)
|
| 213 |
progress_bar = gr.Slider(label="Progress", minimum=0, maximum=100, value=0, interactive=False)
|
| 214 |
+
|
| 215 |
+
demo.queue() # enable streaming
|
| 216 |
+
|
| 217 |
+
process_button.click(
|
| 218 |
+
fn=process_video_ai,
|
| 219 |
+
inputs=[video_input, zoom_slider],
|
| 220 |
+
outputs=[original_video, stabilized_video, logs_output, progress_bar],
|
| 221 |
+
stream=True # enable streaming updates
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
demo.launch()
|