Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,6 @@ import torch
|
|
4 |
import time
|
5 |
import spaces
|
6 |
import re
|
7 |
-
import logging
|
8 |
-
|
9 |
-
# Configure logging
|
10 |
-
logging.basicConfig(level=logging.INFO)
|
11 |
-
logger = logging.getLogger(__name__)
|
12 |
|
13 |
# Model configurations
|
14 |
MODELS = {
|
@@ -23,110 +18,72 @@ MODELS = {
|
|
23 |
"Athena-1 7B": "Spestly/Athena-1-7B"
|
24 |
}
|
25 |
|
26 |
-
# Models that need the enable_thinking parameter
|
27 |
-
THINKING_ENABLED_MODELS = ["Spestly/Athena-R3X-4B"]
|
28 |
-
|
29 |
-
# Cache for loaded models
|
30 |
-
loaded_models = {}
|
31 |
-
|
32 |
-
@spaces.GPU
|
33 |
-
def load_model(model_id):
|
34 |
-
"""Load model and tokenizer once and cache them"""
|
35 |
-
try:
|
36 |
-
if model_id not in loaded_models:
|
37 |
-
logger.info(f"🚀 Loading {model_id}...")
|
38 |
-
start_time = time.time()
|
39 |
-
|
40 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
41 |
-
if tokenizer.pad_token is None:
|
42 |
-
tokenizer.pad_token = tokenizer.eos_token
|
43 |
-
|
44 |
-
model = AutoModelForCausalLM.from_pretrained(
|
45 |
-
model_id,
|
46 |
-
torch_dtype=torch.float16,
|
47 |
-
device_map="auto",
|
48 |
-
trust_remote_code=True
|
49 |
-
)
|
50 |
-
|
51 |
-
load_time = time.time() - start_time
|
52 |
-
logger.info(f"✅ Model loaded in {load_time:.2f}s")
|
53 |
-
loaded_models[model_id] = (model, tokenizer, load_time)
|
54 |
-
|
55 |
-
return loaded_models[model_id]
|
56 |
-
except Exception as e:
|
57 |
-
logger.error(f"Error loading model {model_id}: {str(e)}")
|
58 |
-
raise gr.Error(f"Failed to load model {model_id}. Please try another model.")
|
59 |
-
|
60 |
@spaces.GPU
|
61 |
def generate_response(model_id, conversation, user_message, max_length=512, temperature=0.7):
|
62 |
-
"""Generate response using
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
prompt = tokenizer.apply_chat_template(
|
86 |
-
messages,
|
87 |
-
tokenize=False,
|
88 |
-
add_generation_prompt=True,
|
89 |
-
enable_thinking=True
|
90 |
-
)
|
91 |
-
else:
|
92 |
-
prompt = tokenizer.apply_chat_template(
|
93 |
-
messages,
|
94 |
-
tokenize=False,
|
95 |
-
add_generation_prompt=True
|
96 |
-
)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
logger.error(f"Error in generate_response: {str(e)}")
|
125 |
-
raise gr.Error(f"Error generating response: {str(e)}")
|
126 |
|
127 |
def format_response_with_thinking(response):
|
128 |
"""Format response to handle <think></think> tags"""
|
|
|
129 |
if '<think>' in response and '</think>' in response:
|
|
|
130 |
pattern = r'(.*?)(<think>(.*?)</think>)(.*)'
|
131 |
match = re.search(pattern, response, re.DOTALL)
|
132 |
|
@@ -135,66 +92,53 @@ def format_response_with_thinking(response):
|
|
135 |
thinking_content = match.group(3).strip()
|
136 |
after_thinking = match.group(4).strip()
|
137 |
|
|
|
138 |
html = f"{before_thinking}\n"
|
139 |
html += f'<div class="thinking-container">'
|
140 |
-
html += f'<button class="thinking-toggle"
|
141 |
html += f'<div class="thinking-content hidden">{thinking_content}</div>'
|
142 |
html += f'</div>\n'
|
143 |
html += after_thinking
|
144 |
|
145 |
return html
|
146 |
|
|
|
147 |
return response
|
148 |
|
149 |
-
def validate_input(message):
|
150 |
-
"""Validate user input"""
|
151 |
-
if not message or not message.strip():
|
152 |
-
raise gr.Error("Message cannot be empty")
|
153 |
-
if len(message) > 2000:
|
154 |
-
raise gr.Error("Message too long (max 2000 characters)")
|
155 |
-
return message
|
156 |
-
|
157 |
def chat_submit(message, history, conversation_state, model_name, max_length, temperature):
|
158 |
"""Process a new message and update the chat history"""
|
|
|
|
|
|
|
|
|
159 |
try:
|
160 |
-
#
|
161 |
-
message
|
|
|
162 |
|
163 |
-
|
164 |
-
model_id = MODELS.get(model_name, MODELS["Athena-R3X 4B"])
|
165 |
-
|
166 |
-
# Show generating message
|
167 |
-
yield "", history + [(message, "Generating response...")], conversation_state, gr.update(visible=True)
|
168 |
-
|
169 |
-
# Generate response
|
170 |
-
response, generation_time = generate_response(
|
171 |
model_id, conversation_state, message, max_length, temperature
|
172 |
)
|
173 |
|
174 |
-
# Update conversation state
|
175 |
conversation_state.append({"role": "user", "content": message})
|
176 |
conversation_state.append({"role": "assistant", "content": response})
|
177 |
|
178 |
-
# Limit conversation history to last 10 exchanges
|
179 |
-
if len(conversation_state) > 20: # 10 user + 10 assistant messages
|
180 |
-
conversation_state = conversation_state[-20:]
|
181 |
-
|
182 |
# Format the response for display
|
183 |
formatted_response = format_response_with_thinking(response)
|
184 |
|
185 |
# Update the visible chat history
|
186 |
-
|
187 |
-
|
188 |
-
yield "", updated_history, conversation_state, gr.update(visible=False)
|
189 |
|
|
|
190 |
except Exception as e:
|
191 |
-
|
|
|
|
|
192 |
error_message = f"Error: {str(e)}"
|
193 |
-
|
194 |
-
|
195 |
-
def clear_conversation():
|
196 |
-
"""Clear the conversation history"""
|
197 |
-
return [], [], gr.update(visible=False)
|
198 |
|
199 |
css = """
|
200 |
.message {
|
@@ -206,140 +150,47 @@ css = """
|
|
206 |
margin: 10px 0;
|
207 |
}
|
208 |
.thinking-toggle {
|
209 |
-
background-color:
|
210 |
-
border:
|
211 |
-
border-radius:
|
212 |
-
padding:
|
213 |
cursor: pointer;
|
214 |
-
font-size: 0.
|
215 |
-
margin-bottom:
|
216 |
-
color:
|
217 |
-
display: flex;
|
218 |
-
align-items: center;
|
219 |
-
gap: 8px;
|
220 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
|
221 |
-
transition: background-color 0.2s;
|
222 |
-
width: auto;
|
223 |
-
max-width: 280px;
|
224 |
-
}
|
225 |
-
.thinking-toggle:hover {
|
226 |
-
background-color: rgba(40, 40, 50, 0.9);
|
227 |
-
}
|
228 |
-
.thinking-icon {
|
229 |
-
width: 16px;
|
230 |
-
height: 16px;
|
231 |
-
border-radius: 50%;
|
232 |
-
background-color: #6366f1;
|
233 |
-
position: relative;
|
234 |
-
overflow: hidden;
|
235 |
-
}
|
236 |
-
.thinking-icon::after {
|
237 |
-
content: "";
|
238 |
-
position: absolute;
|
239 |
-
top: 50%;
|
240 |
-
left: 50%;
|
241 |
-
width: 60%;
|
242 |
-
height: 60%;
|
243 |
-
background-color: #a5b4fc;
|
244 |
-
transform: translate(-50%, -50%);
|
245 |
-
border-radius: 50%;
|
246 |
-
}
|
247 |
-
.dropdown-arrow {
|
248 |
-
font-size: 0.7em;
|
249 |
-
margin-left: auto;
|
250 |
-
transition: transform 0.3s;
|
251 |
}
|
252 |
.thinking-content {
|
253 |
-
background-color:
|
254 |
-
border-left:
|
255 |
-
padding:
|
256 |
margin-top: 5px;
|
257 |
-
margin-bottom: 15px;
|
258 |
font-size: 0.95em;
|
259 |
-
color: #
|
260 |
font-family: monospace;
|
261 |
white-space: pre-wrap;
|
262 |
overflow-x: auto;
|
263 |
-
border-radius: 5px;
|
264 |
-
line-height: 1.5;
|
265 |
}
|
266 |
.hidden {
|
267 |
display: none;
|
268 |
}
|
269 |
-
.progress-container {
|
270 |
-
text-align: center;
|
271 |
-
margin: 10px 0;
|
272 |
-
color: #6366f1;
|
273 |
-
}
|
274 |
"""
|
275 |
|
276 |
-
|
277 |
-
function setupThinkingToggle() {
|
278 |
-
document.querySelectorAll('.thinking-toggle').forEach(button => {
|
279 |
-
if (!button.dataset.listenerAdded) {
|
280 |
-
button.addEventListener('click', function() {
|
281 |
-
const content = this.nextElementSibling;
|
282 |
-
content.classList.toggle('hidden');
|
283 |
-
const arrow = this.querySelector('.dropdown-arrow');
|
284 |
-
arrow.textContent = content.classList.contains('hidden') ? '▼' : '▲';
|
285 |
-
});
|
286 |
-
button.dataset.listenerAdded = 'true';
|
287 |
-
}
|
288 |
-
});
|
289 |
-
}
|
290 |
-
|
291 |
-
document.addEventListener('DOMContentLoaded', () => {
|
292 |
-
setupThinkingToggle();
|
293 |
-
|
294 |
-
const observer = new MutationObserver((mutations) => {
|
295 |
-
setupThinkingToggle();
|
296 |
-
});
|
297 |
-
|
298 |
-
observer.observe(document.body, {
|
299 |
-
childList: true,
|
300 |
-
subtree: true
|
301 |
-
});
|
302 |
-
});
|
303 |
-
"""
|
304 |
|
305 |
-
|
306 |
-
with gr.Blocks(title="Athena Playground Chat", css=css, js=js) as demo:
|
307 |
gr.Markdown("# 🚀 Athena Playground Chat")
|
308 |
gr.Markdown("*Powered by HuggingFace ZeroGPU*")
|
309 |
|
310 |
# State to keep track of the conversation for the model
|
311 |
conversation_state = gr.State([])
|
312 |
|
313 |
-
|
314 |
-
progress = gr.HTML(
|
315 |
-
"""<div class="progress-container">Generating response...</div>""",
|
316 |
-
visible=False
|
317 |
-
)
|
318 |
-
|
319 |
-
# Chatbot component
|
320 |
-
chatbot = gr.Chatbot(
|
321 |
-
height=500,
|
322 |
-
label="Athena",
|
323 |
-
render_markdown=True,
|
324 |
-
elem_classes=["chatbot"]
|
325 |
-
)
|
326 |
|
327 |
-
# Input and send button row
|
328 |
with gr.Row():
|
329 |
-
user_input = gr.Textbox(
|
330 |
-
|
331 |
-
scale=8,
|
332 |
-
autofocus=True,
|
333 |
-
placeholder="Type your message here...",
|
334 |
-
lines=2
|
335 |
-
)
|
336 |
-
send_btn = gr.Button(
|
337 |
-
value="Send",
|
338 |
-
scale=1,
|
339 |
-
variant="primary"
|
340 |
-
)
|
341 |
|
342 |
-
# Clear button
|
343 |
clear_btn = gr.Button("Clear Conversation")
|
344 |
|
345 |
# Configuration controls
|
@@ -362,25 +213,28 @@ with gr.Blocks(title="Athena Playground Chat", css=css, js=js) as demo:
|
|
362 |
info="Higher values = more creative responses"
|
363 |
)
|
364 |
|
365 |
-
#
|
366 |
-
|
367 |
-
|
|
|
|
|
|
|
|
|
368 |
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
|
369 |
-
outputs=[user_input, chatbot, conversation_state
|
370 |
)
|
371 |
|
372 |
-
|
373 |
-
|
|
|
374 |
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
|
375 |
-
outputs=[user_input, chatbot, conversation_state
|
376 |
)
|
377 |
|
378 |
-
|
379 |
-
|
380 |
-
outputs=[chatbot, conversation_state, progress]
|
381 |
-
)
|
382 |
|
383 |
-
#
|
384 |
gr.Examples(
|
385 |
examples=[
|
386 |
"What is artificial intelligence?",
|
@@ -388,15 +242,14 @@ with gr.Blocks(title="Athena Playground Chat", css=css, js=js) as demo:
|
|
388 |
"Write a short poem about technology",
|
389 |
"What are some ethical concerns about AI?"
|
390 |
],
|
391 |
-
inputs=user_input
|
392 |
)
|
393 |
|
394 |
gr.Markdown("""
|
395 |
### About the Thinking Tags
|
396 |
Some Athena models (particularly R3X series) include reasoning in `<think></think>` tags.
|
397 |
-
Click
|
398 |
""")
|
399 |
|
400 |
if __name__ == "__main__":
|
401 |
-
demo.
|
402 |
-
demo.launch(debug=True)
|
|
|
4 |
import time
|
5 |
import spaces
|
6 |
import re
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Model configurations
|
9 |
MODELS = {
|
|
|
18 |
"Athena-1 7B": "Spestly/Athena-1-7B"
|
19 |
}
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
@spaces.GPU
|
22 |
def generate_response(model_id, conversation, user_message, max_length=512, temperature=0.7):
|
23 |
+
"""Generate response using ZeroGPU - all CUDA operations happen here"""
|
24 |
+
print(f"🚀 Loading {model_id}...")
|
25 |
+
start_time = time.time()
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
27 |
+
if tokenizer.pad_token is None:
|
28 |
+
tokenizer.pad_token = tokenizer.eos_token
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
model_id,
|
31 |
+
torch_dtype=torch.float16,
|
32 |
+
device_map="auto",
|
33 |
+
trust_remote_code=True
|
34 |
+
)
|
35 |
+
load_time = time.time() - start_time
|
36 |
+
print(f"✅ Model loaded in {load_time:.2f}s")
|
37 |
+
|
38 |
+
# Build messages in proper chat format (OpenAI-style messages)
|
39 |
+
messages = []
|
40 |
+
system_prompt = (
|
41 |
+
"You are Athena, a helpful, harmless, and honest AI assistant. "
|
42 |
+
"You provide clear, accurate, and concise responses to user questions. "
|
43 |
+
"You are knowledgeable across many domains and always aim to be respectful and helpful. "
|
44 |
+
"You are finetuned by Aayan Mishra"
|
45 |
+
)
|
46 |
+
messages.append({"role": "system", "content": system_prompt})
|
47 |
|
48 |
+
# Add conversation history
|
49 |
+
for msg in conversation:
|
50 |
+
messages.append(msg)
|
51 |
|
52 |
+
# Add current user message
|
53 |
+
messages.append({"role": "user", "content": user_message})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
prompt = tokenizer.apply_chat_template(
|
56 |
+
messages,
|
57 |
+
tokenize=False,
|
58 |
+
add_generation_prompt=True
|
59 |
+
)
|
60 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
61 |
+
device = next(model.parameters()).device
|
62 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
63 |
+
generation_start = time.time()
|
64 |
+
with torch.no_grad():
|
65 |
+
outputs = model.generate(
|
66 |
+
**inputs,
|
67 |
+
max_new_tokens=max_length,
|
68 |
+
temperature=temperature,
|
69 |
+
do_sample=True,
|
70 |
+
top_p=0.9,
|
71 |
+
pad_token_id=tokenizer.eos_token_id,
|
72 |
+
eos_token_id=tokenizer.eos_token_id
|
73 |
+
)
|
74 |
+
generation_time = time.time() - generation_start
|
75 |
+
response = tokenizer.decode(
|
76 |
+
outputs[0][inputs['input_ids'].shape[-1]:],
|
77 |
+
skip_special_tokens=True
|
78 |
+
).strip()
|
79 |
+
print(f"Generation time: {generation_time:.2f}s")
|
80 |
+
return response, load_time, generation_time
|
|
|
|
|
81 |
|
82 |
def format_response_with_thinking(response):
|
83 |
"""Format response to handle <think></think> tags"""
|
84 |
+
# Check if response contains thinking tags
|
85 |
if '<think>' in response and '</think>' in response:
|
86 |
+
# Split the response into parts
|
87 |
pattern = r'(.*?)(<think>(.*?)</think>)(.*)'
|
88 |
match = re.search(pattern, response, re.DOTALL)
|
89 |
|
|
|
92 |
thinking_content = match.group(3).strip()
|
93 |
after_thinking = match.group(4).strip()
|
94 |
|
95 |
+
# Create HTML with collapsible thinking section
|
96 |
html = f"{before_thinking}\n"
|
97 |
html += f'<div class="thinking-container">'
|
98 |
+
html += f'<button class="thinking-toggle" onclick="this.nextElementSibling.classList.toggle(\'hidden\'); this.textContent = this.textContent === \'Show reasoning\' ? \'Hide reasoning\' : \'Show reasoning\'">Show reasoning</button>'
|
99 |
html += f'<div class="thinking-content hidden">{thinking_content}</div>'
|
100 |
html += f'</div>\n'
|
101 |
html += after_thinking
|
102 |
|
103 |
return html
|
104 |
|
105 |
+
# If no thinking tags, return the original response
|
106 |
return response
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
def chat_submit(message, history, conversation_state, model_name, max_length, temperature):
|
109 |
"""Process a new message and update the chat history"""
|
110 |
+
if not message.strip():
|
111 |
+
return "", history, conversation_state
|
112 |
+
|
113 |
+
model_id = MODELS.get(model_name, MODELS["Athena-R3X 4B"])
|
114 |
try:
|
115 |
+
# Print debug info to help diagnose issues
|
116 |
+
print(f"Processing message: {message}")
|
117 |
+
print(f"Selected model: {model_name} ({model_id})")
|
118 |
|
119 |
+
response, load_time, generation_time = generate_response(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
model_id, conversation_state, message, max_length, temperature
|
121 |
)
|
122 |
|
123 |
+
# Update the conversation state with the raw response
|
124 |
conversation_state.append({"role": "user", "content": message})
|
125 |
conversation_state.append({"role": "assistant", "content": response})
|
126 |
|
|
|
|
|
|
|
|
|
127 |
# Format the response for display
|
128 |
formatted_response = format_response_with_thinking(response)
|
129 |
|
130 |
# Update the visible chat history
|
131 |
+
history.append((message, formatted_response))
|
132 |
+
print(f"Response added to history. Current length: {len(history)}")
|
|
|
133 |
|
134 |
+
return "", history, conversation_state
|
135 |
except Exception as e:
|
136 |
+
import traceback
|
137 |
+
print(f"Error in chat_submit: {str(e)}")
|
138 |
+
print(traceback.format_exc())
|
139 |
error_message = f"Error: {str(e)}"
|
140 |
+
history.append((message, error_message))
|
141 |
+
return "", history, conversation_state
|
|
|
|
|
|
|
142 |
|
143 |
css = """
|
144 |
.message {
|
|
|
150 |
margin: 10px 0;
|
151 |
}
|
152 |
.thinking-toggle {
|
153 |
+
background-color: #f1f1f1;
|
154 |
+
border: 1px solid #ddd;
|
155 |
+
border-radius: 4px;
|
156 |
+
padding: 5px 10px;
|
157 |
cursor: pointer;
|
158 |
+
font-size: 0.9em;
|
159 |
+
margin-bottom: 5px;
|
160 |
+
color: #555;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
}
|
162 |
.thinking-content {
|
163 |
+
background-color: #f9f9f9;
|
164 |
+
border-left: 3px solid #ccc;
|
165 |
+
padding: 10px;
|
166 |
margin-top: 5px;
|
|
|
167 |
font-size: 0.95em;
|
168 |
+
color: #555;
|
169 |
font-family: monospace;
|
170 |
white-space: pre-wrap;
|
171 |
overflow-x: auto;
|
|
|
|
|
172 |
}
|
173 |
.hidden {
|
174 |
display: none;
|
175 |
}
|
|
|
|
|
|
|
|
|
|
|
176 |
"""
|
177 |
|
178 |
+
theme = gr.themes.Soft()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
+
with gr.Blocks(title="Athena Playground Chat", css=css, theme=theme) as demo:
|
|
|
181 |
gr.Markdown("# 🚀 Athena Playground Chat")
|
182 |
gr.Markdown("*Powered by HuggingFace ZeroGPU*")
|
183 |
|
184 |
# State to keep track of the conversation for the model
|
185 |
conversation_state = gr.State([])
|
186 |
|
187 |
+
chatbot = gr.Chatbot(height=500, label="Athena", render_markdown=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
|
|
189 |
with gr.Row():
|
190 |
+
user_input = gr.Textbox(label="Your message", scale=8, autofocus=True, placeholder="Type your message here...")
|
191 |
+
send_btn = gr.Button(value="Send", scale=1, variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
# Clear button for resetting the conversation
|
194 |
clear_btn = gr.Button("Clear Conversation")
|
195 |
|
196 |
# Configuration controls
|
|
|
213 |
info="Higher values = more creative responses"
|
214 |
)
|
215 |
|
216 |
+
# Function to clear the conversation
|
217 |
+
def clear_conversation():
|
218 |
+
return [], []
|
219 |
+
|
220 |
+
# Connect the interface components - note the specific ordering
|
221 |
+
user_input.submit(
|
222 |
+
chat_submit,
|
223 |
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
|
224 |
+
outputs=[user_input, chatbot, conversation_state]
|
225 |
)
|
226 |
|
227 |
+
# Make sure send button uses the exact same function with the same parameter ordering
|
228 |
+
send_btn.click(
|
229 |
+
chat_submit,
|
230 |
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
|
231 |
+
outputs=[user_input, chatbot, conversation_state]
|
232 |
)
|
233 |
|
234 |
+
# Connect clear button
|
235 |
+
clear_btn.click(clear_conversation, outputs=[chatbot, conversation_state])
|
|
|
|
|
236 |
|
237 |
+
# Add examples if desired
|
238 |
gr.Examples(
|
239 |
examples=[
|
240 |
"What is artificial intelligence?",
|
|
|
242 |
"Write a short poem about technology",
|
243 |
"What are some ethical concerns about AI?"
|
244 |
],
|
245 |
+
inputs=[user_input]
|
246 |
)
|
247 |
|
248 |
gr.Markdown("""
|
249 |
### About the Thinking Tags
|
250 |
Some Athena models (particularly R3X series) include reasoning in `<think></think>` tags.
|
251 |
+
Click "Show reasoning" to see the model's thought process behind its answers.
|
252 |
""")
|
253 |
|
254 |
if __name__ == "__main__":
|
255 |
+
demo.launch(debug=True) # Enable debug mode for better error reporting
|
|