Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import time | |
import spaces | |
import re | |
# Model configurations | |
MODELS = { | |
"Athena-R3X 8B": "Spestly/Athena-R3X-8B", | |
"Athena-R3X 4B": "Spestly/Athena-R3X-4B", | |
"Athena-R3 7B": "Spestly/Athena-R3-7B", | |
"Athena-3 3B": "Spestly/Athena-3-3B", | |
"Athena-3 7B": "Spestly/Athena-3-7B", | |
"Athena-3 14B": "Spestly/Athena-3-14B", | |
"Athena-2 1.5B": "Spestly/Athena-2-1.5B", | |
"Athena-1 3B": "Spestly/Athena-1-3B", | |
"Athena-1 7B": "Spestly/Athena-1-7B" | |
} | |
def generate_response(model_id, conversation, user_message, max_length=512, temperature=0.7): | |
"""Generate response using ZeroGPU - all CUDA operations happen here""" | |
print(f"π Loading {model_id}...") | |
start_time = time.time() | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
load_time = time.time() - start_time | |
print(f"β Model loaded in {load_time:.2f}s") | |
# Build messages in proper chat format (OpenAI-style messages) | |
messages = [] | |
system_prompt = ( | |
"You are Athena, a helpful, harmless, and honest AI assistant. " | |
"You provide clear, accurate, and concise responses to user questions. " | |
"You are knowledgeable across many domains and always aim to be respectful and helpful. " | |
"You are finetuned by Aayan Mishra" | |
) | |
messages.append({"role": "system", "content": system_prompt}) | |
# Add conversation history | |
for msg in conversation: | |
messages.append(msg) | |
# Add current user message | |
messages.append({"role": "user", "content": user_message}) | |
prompt = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
device = next(model.parameters()).device | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
generation_start = time.time() | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_length, | |
temperature=temperature, | |
do_sample=True, | |
top_p=0.9, | |
pad_token_id=tokenizer.eos_token_id, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
generation_time = time.time() - generation_start | |
response = tokenizer.decode( | |
outputs[0][inputs['input_ids'].shape[-1]:], | |
skip_special_tokens=True | |
).strip() | |
print(f"Generation time: {generation_time:.2f}s") | |
return response, load_time, generation_time | |
def format_response_with_thinking(response): | |
"""Format response to handle <think></think> tags""" | |
# Check if response contains thinking tags | |
if '<think>' in response and '</think>' in response: | |
# Split the response into parts | |
pattern = r'(.*?)(<think>(.*?)</think>)(.*)' | |
match = re.search(pattern, response, re.DOTALL) | |
if match: | |
before_thinking = match.group(1).strip() | |
thinking_content = match.group(3).strip() | |
after_thinking = match.group(4).strip() | |
# Create HTML with collapsible thinking section | |
html = f"{before_thinking}\n" | |
html += f'<div class="thinking-container">' | |
html += f'<button class="thinking-toggle" onclick="this.nextElementSibling.classList.toggle(\'hidden\'); this.textContent = this.textContent === \'Show reasoning\' ? \'Hide reasoning\' : \'Show reasoning\'">Show reasoning</button>' | |
html += f'<div class="thinking-content hidden">{thinking_content}</div>' | |
html += f'</div>\n' | |
html += after_thinking | |
return html | |
# If no thinking tags, return the original response | |
return response | |
def chat_submit(message, history, conversation_state, model_name, max_length, temperature): | |
"""Process a new message and update the chat history""" | |
if not message.strip(): | |
return "", history, conversation_state | |
model_id = MODELS.get(model_name, MODELS["Athena-R3X 4B"]) | |
try: | |
# Print debug info to help diagnose issues | |
print(f"Processing message: {message}") | |
print(f"Selected model: {model_name} ({model_id})") | |
response, load_time, generation_time = generate_response( | |
model_id, conversation_state, message, max_length, temperature | |
) | |
# Update the conversation state with the raw response | |
conversation_state.append({"role": "user", "content": message}) | |
conversation_state.append({"role": "assistant", "content": response}) | |
# Format the response for display | |
formatted_response = format_response_with_thinking(response) | |
# Update the visible chat history | |
history.append((message, formatted_response)) | |
print(f"Response added to history. Current length: {len(history)}") | |
return "", history, conversation_state | |
except Exception as e: | |
import traceback | |
print(f"Error in chat_submit: {str(e)}") | |
print(traceback.format_exc()) | |
error_message = f"Error: {str(e)}" | |
history.append((message, error_message)) | |
return "", history, conversation_state | |
css = """ | |
.message { | |
padding: 10px; | |
margin: 5px; | |
border-radius: 10px; | |
} | |
.thinking-container { | |
margin: 10px 0; | |
} | |
.thinking-toggle { | |
background-color: #f1f1f1; | |
border: 1px solid #ddd; | |
border-radius: 4px; | |
padding: 5px 10px; | |
cursor: pointer; | |
font-size: 0.9em; | |
margin-bottom: 5px; | |
color: #555; | |
} | |
.thinking-content { | |
background-color: #f9f9f9; | |
border-left: 3px solid #ccc; | |
padding: 10px; | |
margin-top: 5px; | |
font-size: 0.95em; | |
color: #555; | |
font-family: monospace; | |
white-space: pre-wrap; | |
overflow-x: auto; | |
} | |
.hidden { | |
display: none; | |
} | |
""" | |
with gr.Blocks(title="Athena Playground Chat", css=css, theme='NoCrypt/miku') as demo: | |
gr.Markdown("# π Athena Playground Chat") | |
gr.Markdown("*Powered by HuggingFace ZeroGPU*") | |
# State to keep track of the conversation for the model | |
conversation_state = gr.State([]) | |
chatbot = gr.Chatbot(height=500, label="Athena", render_markdown=True) | |
with gr.Row(): | |
user_input = gr.Textbox(label="Your message", scale=8, autofocus=True, placeholder="Type your message here...") | |
send_btn = gr.Button(value="Send", scale=1, variant="primary") | |
# Clear button for resetting the conversation | |
clear_btn = gr.Button("Clear Conversation") | |
# Configuration controls | |
gr.Markdown("### βοΈ Model & Generation Settings") | |
with gr.Row(): | |
model_choice = gr.Dropdown( | |
label="π± Model", | |
choices=list(MODELS.keys()), | |
value="Athena-R3X 4B", | |
info="Select which Athena model to use" | |
) | |
max_length = gr.Slider( | |
32, 8192, value=512, | |
label="π Max Tokens", | |
info="Maximum number of tokens to generate" | |
) | |
temperature = gr.Slider( | |
0.1, 2.0, value=0.7, | |
label="π¨ Creativity", | |
info="Higher values = more creative responses" | |
) | |
# Function to clear the conversation | |
def clear_conversation(): | |
return [], [] | |
# Connect the interface components - note the specific ordering | |
user_input.submit( | |
chat_submit, | |
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature], | |
outputs=[user_input, chatbot, conversation_state] | |
) | |
# Make sure send button uses the exact same function with the same parameter ordering | |
send_btn.click( | |
chat_submit, | |
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature], | |
outputs=[user_input, chatbot, conversation_state] | |
) | |
# Connect clear button | |
clear_btn.click(clear_conversation, outputs=[chatbot, conversation_state]) | |
# Add examples if desired | |
gr.Examples( | |
examples=[ | |
"What is artificial intelligence?", | |
"Can you explain quantum computing?", | |
"Write a short poem about technology", | |
"What are some ethical concerns about AI?" | |
], | |
inputs=[user_input] | |
) | |
gr.Markdown(""" | |
### About the Thinking Tags | |
Some Athena models (particularly R3X series) include reasoning in `<think></think>` tags. | |
Click "Show reasoning" to see the model's thought process behind its answers. | |
""") | |
if __name__ == "__main__": | |
demo.launch(debug=True) # Enable debug mode for better error reporting |